17 papers:
- DAC-2013-SharadFR #memory management #power management
- Ultra low power associative computing with spin neurons and resistive crossbar memory (MS, DF, KR), p. 6.
- HPCA-2013-NereHLT #behaviour #biology #semantic gap
- Bridging the semantic gap: Emulating biological neuronal behaviors with simple digital neurons (AN, AH, MHL, GT), pp. 472–483.
- ICPR-2012-HardingHCLC #automation #detection #image
- Automated detection of skeletal muscle twitches from B-mode ultrasound images: An application to motor neuron disease (PJH, EFHT, RC, IL, NC), pp. 2630–2633.
- ICEIS-AIDSS-2010-SilvaCRN #assessment #fault #identification #network
- Assessment of the Change in the Number of Neurons in Hidden Layers of Neural Networks for Fault Identification in Electrical Systems (DTdS, PHGC, JAPR, LBN), pp. 309–313.
- DHM-2007-ZhangWXWY
- Mechanism of Bifurcation-Dependent Coherence Resonance of Excitable Neuron Model (GJZ, JW, JXX, XBW, HY), pp. 757–766.
- ICPR-v2-2006-SridharanBG
- Competitive Mixtures of Simple Neurons (KS, MJB, VG), pp. 494–497.
- SAC-2005-FoutHD #optimisation #visualisation
- Visualization of neuronal fiber connections from DT-MRI with global optimization (NF, JH, ZD), pp. 1200–1206.
- ICPR-v4-2004-NandedkarB #architecture #classification #fuzzy #network
- A Fuzzy Min-Max Neural Network Classifier with Compensatory Neuron Architecture (AVN, PKB), pp. 553–556.
- DATE-2003-DoboliGD #clustering #modelling #network #using
- Extraction of Piecewise-Linear Analog Circuit Models from Trained Neural Networks Using Hidden Neuron Clustering (SD, GG, AD), pp. 11098–11099.
- ICPR-v3-2002-SilvestreL #bound #classification #optimisation
- Optimization of Neural Classifiers Based on Bayesian Decision Boundaries and Idle Neurons Pruning (MRS, LLL), pp. 387–390.
- ICPR-v2-2000-AizenbergABF #image #multi #network #recognition
- Image Recognition on the Neural Network Based on Multi-Valued Neurons (INA, NNA, CB, EF), pp. 2989–2992.
- ICDAR-1999-SaidYS #recognition #using
- Recognition of English and Arabic Numerals using a Dynamic Number of Hidden Neurons (FNS, RAY, CYS), pp. 237–240.
- MLDM-1999-AizenbergAK #algorithm #image #learning #multi #recognition
- Multi-valued and Universal Binary Neurons: Learning Algorithms, Application to Image Processing and Recognition (INA, NNA, GAK), pp. 21–35.
- ICPR-1996-AizenbergAK #image #learning #multi #network #pattern matching #pattern recognition #recognition
- Multi-valued and universal binary neurons: mathematical model, learning, networks, application to image processing and pattern recognition (NNA, INA, GAK), pp. 185–189.
- ICPR-1996-Bobrowski #classification #learning #set
- Piecewise-linear classifiers, formal neurons and separability of the learning sets (LB), pp. 224–228.
- ML-1990-ObradovicP #learning #multi
- Learning with Discrete Multi-Valued Neurons (ZO, IP), pp. 392–399.
- SEKE-1990-Mazurov #learning #parallel #process
- Parallel Processes of Decision Making and Multivalued Interpretation of Contradictory Data by Learning Neuron Machines (VDM), p. 165.