BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
dual (17)
algorithm (9)
problem (5)
approxim (5)
steiner (3)

Stem primal$ (all stems)

29 papers:

ICALPICALP-v1-2015-BhattacharyaHI #algorithm #design
Design of Dynamic Algorithms via Primal-Dual Method (SB, MH, GFI), pp. 206–218.
ICMLICML-2015-MaSJJRT #distributed #optimisation
Adding vs. Averaging in Distributed Primal-Dual Optimization (CM, VS, MJ, MIJ, PR, MT), pp. 1973–1982.
ICMLICML-2015-ZhangL #coordination #empirical #probability
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization (YZ, XL), pp. 353–361.
STOCSTOC-2014-KesselheimTRV #online
Primal beats dual on online packing LPs in the random-order model (TK, KR, AT, BV), pp. 303–312.
ICMLICML-c2-2014-NieHH #linear
Linear Time Solver for Primal SVM (FN, YH, HH), pp. 505–513.
ICMLICML-c3-2013-TakacBRS
Mini-Batch Primal and Dual Methods for SVMs (MT, ASB, PR, NS), pp. 1022–1030.
DACDAC-2012-LiuH12a #named #optimisation
ComPLx: A Competitive Primal-dual Lagrange Optimization for Global Placement (MCK, ILM), pp. 747–752.
ICALPICALP-v1-2011-Moldenhauer #algorithm #approximate #graph
Primal-Dual Approximation Algorithms for Node-Weighted Steiner Forest on Planar Graphs (CM), pp. 748–759.
ICMLICML-2009-ZhuX #markov #network #on the
On primal and dual sparsity of Markov networks (JZ, EPX), pp. 1265–1272.
KDDKDD-2009-ZhuXZ #markov #network
Primal sparse Max-margin Markov networks (JZ, EPX, BZ), pp. 1047–1056.
CIAACIAA-2008-Salomaa
Language Decompositions, Primality, and Trajectory-Based Operations (KS), pp. 17–22.
LATALATA-2008-SalomaaSY
Length Codes, Products of Languages and Primality (AS, KS, SY), pp. 476–486.
STOCSTOC-2007-AroraK #approach #combinator #source code
A combinatorial, primal-dual approach to semidefinite programs (SA, SK), pp. 227–236.
ICMLICML-2007-Shalev-ShwartzSS #named
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (SSS, YS, NS), pp. 807–814.
ICPRICPR-v2-2006-DaiZX #generative #image #sketching
Integrating EMD and Gradient for Generating Primal Sketch of Natural Images (FD, NZ, JX), pp. 429–432.
ICALPICALP-2005-BorodinCM #algorithm #how #question
How Well Can Primal-Dual and Local-Ratio Algorithms Perform? (AB, DC, AM), pp. 943–955.
ICALPICALP-2005-KonemannLSZ #problem
From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation for the Steiner Forest Problem (JK, SL, GS, SHMvZ), pp. 930–942.
STOCSTOC-2004-LeviRS #algorithm #problem
Primal-dual algorithms for deterministic inventory problems (RL, RR, DBS), pp. 353–362.
ITiCSEITiCSE-2003-PapamanthouP #algorithm #problem #visualisation
A visualization of the primal simplex algorithm for the assignment problem (CP, KP), p. 267.
STOCSTOC-2003-KonemannR #approximate #bound
Primal-dual meets local search: approximating MST’s with nonuniform degree bounds (JK, RR), pp. 389–395.
STOCSTOC-2002-JainV #algorithm
Equitable cost allocations via primal-dual-type algorithms (KJ, VVV), pp. 313–321.
ICALPICALP-1997-Fujito #approach #approximate #problem
A Primal-Dual Approach to Approximation of Node-Deletion Problems for Matroidal Properties (TF), pp. 749–759.
CADECADE-1994-Salzer #unification
Primal Grammars and Unification Modulo a Binary Clause (GS), pp. 282–295.
STOCSTOC-1993-WilliamsonGMV #algorithm #approximate #network #problem
A primal-dual approximation algorithm for generalized Steiner network problems (DPW, MXG, MM, VVV), pp. 708–717.
ICALPICALP-1993-GargVY #algorithm #approximate #multi #set
Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover (NG, VVV, MY), pp. 64–75.
STOCSTOC-1988-PintzSS #infinity #performance #testing
Two Infinite Sets of Primes with Fast Primality Tests (JP, WLS, ES), pp. 504–509.
ICALPICALP-1985-Furer #algorithm #testing
Deterministic and Las Vegas Primality Testing Algorithms (MF), pp. 199–209.
ICALPICALP-1981-HeintzS #decidability #polynomial #random
Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables (JH, MS), pp. 16–28.
STOCSTOC-1975-Miller #testing
Riemann’s Hypothesis and Tests for Primality (GLM), pp. 234–239.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.