## Stem sparsif$ (all stems)

### 19 papers:

- DAC-2015-HanF #analysis #approach #cpu #gpu #graph #scalability
- Transient-simulation guided graph sparsification approach to scalable harmonic balance (HB) analysis of post-layout RF circuits leveraging heterogeneous CPU-GPU computing systems (LH, ZF), p. 6.
- STOC-2015-ZhuLO #matrix #multi
- Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates (ZAZ, ZL, LO), pp. 237–245.
- ICML-c3-2013-Cho #image
- Simple Sparsification Improves Sparse Denoising Autoencoders in Denoising Highly Corrupted Images (KC), pp. 432–440.
- PODS-2012-AhnGM #graph #sketching
- Graph sketches: sparsification, spanners, and subgraphs (KJA, SG, AM), pp. 5–14.
- ICALP-v1-2012-SanthanamS #on the
- On the Limits of Sparsification (RS, SS), pp. 774–785.
- ICML-2012-SunGS #kernel #on the #online #taxonomy
- On the Size of the Online Kernel Sparsification Dictionary (YS, FJG, JS), p. 79.
- ICPR-2012-RaketN #algorithm
- A splitting algorithm for directional regularization and sparsification (LLR, MN), pp. 3094–3098.
- SIGMOD-2011-SatuluriPR #clustering #graph #scalability
- Local graph sparsification for scalable clustering (VS, SP, YR), pp. 721–732.
- STOC-2011-FungHHP #framework #graph
- A general framework for graph sparsification (WSF, RH, NJAH, DP), pp. 71–80.
- KDD-2011-MathioudakisBCGU #network
- Sparsification of influence networks (MM, FB, CC, AG, AU), pp. 529–537.
- STOC-2010-DellM #polynomial #satisfiability
- Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses (HD, DvM), pp. 251–260.
- STOC-2010-KollaMST
- Subgraph sparsification and nearly optimal ultrasparsifiers (AK, YM, AS, SHT), pp. 57–66.
- STOC-2010-LeightonM
- Extensions and limits to vertex sparsification (FTL, AM), pp. 47–56.
- ICALP-v2-2009-AhnG #graph
- Graph Sparsification in the Semi-streaming Model (KJA, SG), pp. 328–338.
- ICML-2009-GargK #algorithm #strict
- Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property (RG, RK), pp. 337–344.
- STOC-2008-SpielmanS #effectiveness #graph
- Graph sparsification by effective resistances (DAS, NS), pp. 563–568.
- STOC-2004-SpielmanT #algorithm #clustering #graph #linear
- Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems (DAS, SHT), pp. 81–90.
- DAC-2000-KanapkaPW #performance
- Fast methods for extraction and sparsification of substrate coupling (JK, JRP, JW), pp. 738–743.
- STOC-1993-EppsteinGIS #algorithm #graph
- Separator based sparsification for dynamic planar graph algorithms (DE, ZG, GFI, THS), pp. 208–217.