46 papers:
- CASE-2015-BjorkenstamCL
- Exploiting sparsity in the discrete mechanics and optimal control method with application to human motion planning (SB, JSC, BL), pp. 769–774.
- ICALP-v1-2015-Sanyal #bound #fourier
- Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions in Terms of Fourier Sparsity (SS), pp. 1035–1045.
- ICML-2015-HegdeIS #framework
- A Nearly-Linear Time Framework for Graph-Structured Sparsity (CH, PI, LS), pp. 928–937.
- CIKM-2014-TaoIWS #analysis #canonical #correlation
- Exploring Shared Subspace and Joint Sparsity for Canonical Correlation Analysis (LT, HHSI, YW, XS), pp. 1887–1890.
- CIKM-2014-XuLLZCS #mining
- Latent Aspect Mining via Exploring Sparsity and Intrinsic Information (YX, TL, WL, ZZ, HC, AMCS), pp. 879–888.
- CIKM-2014-ZhangZZLM #comprehension #constraints #matrix
- Understanding the Sparsity: Augmented Matrix Factorization with Sampled Constraints on Unobservables (YZ, MZ, YZ, YL, SM), pp. 1189–1198.
- ICML-c2-2014-YuanLZ #optimisation
- Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization (XY, PL, TZ), pp. 127–135.
- ICPR-2014-ChenH #composition #detection
- Implicit Rank-Sparsity Decomposition: Applications to Saliency/Co-saliency Detection (YLC, CTH), pp. 2305–2310.
- ICPR-2014-ChenPH #algorithm
- O(1) Algorithms for Overlapping Group Sparsity (CC, ZP, JH), pp. 1645–1650.
- ICPR-2014-LiuL0L #classification #image #learning
- Regularized Hierarchical Feature Learning with Non-negative Sparsity and Selectivity for Image Classification (BL, JL, XB, HL), pp. 4293–4298.
- ICPR-2014-LiuS #analysis
- Discriminative Partition Sparsity Analysis (LL, LS), pp. 1597–1602.
- ICPR-2014-WangYWWL
- Discriminative Representative Selection via Structure Sparsity (BW, QY, SW, LW, GL), pp. 1401–1406.
- STOC-2013-ClarksonW #approximate #rank
- Low rank approximation and regression in input sparsity time (KLC, DPW), pp. 81–90.
- STOC-2013-MengM #linear #robust
- Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression (XM, MWM), pp. 91–100.
- STOC-2013-NelsonN #bound
- Sparsity lower bounds for dimensionality reducing maps (JN, HLN), pp. 101–110.
- ICEIS-v2-2013-DjuanaXLJC #ontology #problem #recommendation
- An Ontology-based Method for Sparsity Problem in Tag Recommendation (ED, YX, YL, AJ, CC), pp. 467–474.
- CIKM-2013-AlbakourMO #effectiveness #microblog #on the #realtime
- On sparsity and drift for effective real-time filtering in microblogs (MDA, CM, IO), pp. 419–428.
- ICML-c1-2013-MehtaG #bound #predict
- Sparsity-Based Generalization Bounds for Predictive Sparse Coding (NAM, AGG), pp. 36–44.
- ICML-c1-2013-WongAF #adaptation #modelling #visual notation
- Adaptive Sparsity in Gaussian Graphical Models (EW, SPA, PTF), pp. 311–319.
- ICML-c3-2013-DalalyanHMS #learning #modelling #programming
- Learning Heteroscedastic Models by Convex Programming under Group Sparsity (ASD, MH, KM, JS), pp. 379–387.
- ICML-c3-2013-Lopes
- Estimating Unknown Sparsity in Compressed Sensing (ML), pp. 217–225.
- ICML-c3-2013-WangNH13a #clustering #learning #multi
- Multi-View Clustering and Feature Learning via Structured Sparsity (HW, FN, HH), pp. 352–360.
- ICML-c3-2013-ZhangYJLH #bound #kernel #learning #online
- Online Kernel Learning with a Near Optimal Sparsity Bound (LZ, JY, RJ, ML, XH), pp. 621–629.
- RecSys-2013-Guo #recommendation #similarity #trust
- Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems (GG), pp. 451–454.
- SAC-2013-BlondelSU #classification #constraints #learning #using
- Learning non-linear classifiers with a sparsity constraint using L1 regularization (MB, KS, KU), pp. 167–169.
- ICALP-v1-2012-ItoTY #algorithm
- Constant-Time Algorithms for Sparsity Matroids (HI, SiT, YY), pp. 498–509.
- ICPR-2012-AryafarJS #automation #classification #using
- Automatic musical genre classification using sparsity-eager support vector machines (KA, SJ, AS), pp. 1526–1529.
- ICPR-2012-LiuSZ #feature model #graph
- Sparsity Score: A new filter feature selection method based on graph (ML, DS, DZ), pp. 959–962.
- KDD-2012-JiZL #clustering
- A sparsity-inducing formulation for evolutionary co-clustering (SJ, WZ, JL), pp. 334–342.
- KDD-2012-ZhangL #component #constraints #mining #rank #recognition
- Mining discriminative components with low-rank and sparsity constraints for face recognition (QZ, BL), pp. 1469–1477.
- RecSys-2012-ZelenikB #information management #recommendation
- Reducing the sparsity of contextual information for recommender systems (DZ, MB), pp. 341–344.
- CIKM-2011-NaveedGKA #documentation #microblog #quality
- Searching microblogs: coping with sparsity and document quality (NN, TG, JK, ACA), pp. 183–188.
- ICML-2011-VirtanenKK
- Bayesian CCA via Group Sparsity (SV, AK, SK), pp. 457–464.
- SIGIR-2011-MoshfeghiPJ #collaboration #semantics #using
- Handling data sparsity in collaborative filtering using emotion and semantic based features (YM, BP, JMJ), pp. 625–634.
- ICML-2010-KimX #multi
- Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity (SK, EPX), pp. 543–550.
- ICPR-2010-ErdoganG #using
- Semi-blind Speech-Music Separation Using Sparsity and Continuity Priors (HE, EMG), pp. 4573–4576.
- ICPR-2010-LiuS #similarity #using #visual notation
- Visual Tracking Using Sparsity Induced Similarity (HL, FS), pp. 1702–1705.
- ICALP-v1-2009-GopalanOSSW #fourier #testing
- Testing Fourier Dimensionality and Sparsity (PG, RO, RAS, AS, KW), pp. 500–512.
- ICML-2009-DuchiS
- Boosting with structural sparsity (JCD, YS), pp. 297–304.
- ICML-2009-HuangZM #learning
- Learning with structured sparsity (JH, TZ, DNM), pp. 417–424.
- ICML-2009-ZhuX #markov #network #on the
- On primal and dual sparsity of Markov networks (JZ, EPX), pp. 1265–1272.
- DAC-2008-DargaSM #performance #symmetry #using
- Faster symmetry discovery using sparsity of symmetries (PTD, KAS, ILM), pp. 149–154.
- RecSys-2008-YildirimK #collaboration #problem #random
- A random walk method for alleviating the sparsity problem in collaborative filtering (HY, MSK), pp. 131–138.
- SAS-2005-SimonK #analysis
- Exploiting Sparsity in Polyhedral Analysis (AS, AK), pp. 336–351.
- KDD-2005-Kolcz #classification #naive bayes
- Local sparsity control for naive Bayes with extreme misclassification costs (AK), pp. 128–137.
- STOC-1996-KapurS
- Sparsity Considerations in Dixon Resultants (DK, TS), pp. 184–191.