BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
naïve Bayes
Google naïve Bayes

Tag #naive bayes

52 papers:

TPDLTPDL-2015-Nunzio #education #geometry #machine learning
Teaching Machine Learning: A Geometric View of Naïve Bayes (GMDN), pp. 343–346.
CIKMCIKM-2015-ViegasGMR #classification #documentation #effectiveness #lazy evaluation #parallel #performance
Parallel Lazy Semi-Naive Bayes Strategies for Effective and Efficient Document Classification (FV, MAG, WM, LCdR), pp. 1071–1080.
SACSAC-2015-Valverde-Rebaza #modelling #network #online #predict #social
A naïve Bayes model based on ovelapping groups for link prediction in online social networks (JCVR, AV, LB, TdPF, AdAL), pp. 1136–1141.
ICPRICPR-2014-FornoniC #learning #recognition
Scene Recognition with Naive Bayes Non-linear Learning (MF, BC), pp. 3404–3409.
KDIRKDIR-KMIS-2013-CheetiSC #adaptation #approach #classification #sentiment #syntax #using
Cross-domain Sentiment Classification using an Adapted Naïve Bayes Approach and Features Derived from Syntax Trees (SC, AS, DC), pp. 169–176.
CIKMCIKM-2012-ChenW #automation #classification
Automated feature weighting in naive bayes for high-dimensional data classification (LC, SW), pp. 1243–1252.
SIGIRSIGIR-2012-NunzioS #classification #data analysis #visual notation
A visual tool for bayesian data analysis: the impact of smoothing on naive bayes text classifiers (GMDN, AS), p. 1002.
ICMLICML-2011-SuSM #classification #multi #scalability #using
Large Scale Text Classification using Semisupervised Multinomial Naive Bayes (JS, JSS, SM), pp. 97–104.
MLDMMLDM-2011-LiuM #multi
Smoothing Multinomial Naïve Bayes in the Presence of Imbalance (AL, CEM), pp. 46–59.
DRRDRR-2010-KimLT #classification #online
Naïve Bayes and SVM classifiers for classifying databank accession number sentences from online biomedical articles (JK, DXL, GRT), pp. 1–10.
CIKMCIKM-2010-SonPS #classification #estimation #learning
Learning naïve bayes transfer classifier throughclass-wise test distribution estimation (JWS, SBP, HJS), pp. 1729–1732.
ICPRICPR-2010-FuLTZ #classification #learning #music #retrieval
Learning Naive Bayes Classifiers for Music Classification and Retrieval (ZF, GL, KMT, DZ), pp. 4589–4592.
ICPRICPR-2010-GodecLSB #online #random
On-Line Random Naive Bayes for Tracking (MG, CL, AS, HB), pp. 3545–3548.
VLDBVLDB-2009-MozafariZ #classification #privacy
Publishing Naive Bayesian Classifiers: Privacy without Accuracy Loss (BM, CZ), pp. 1173–1185.
ECIRECIR-2009-TanCWX #adaptation #analysis #sentiment
Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis (ST, XC, YW, HX), pp. 337–349.
EDMEDM-2008-DesmaraisVG #adaptation #design #framework
Adaptive Test Design with a Naive Bayes Framework (MCD, AV, MG), pp. 48–56.
SIGIRSIGIR-2008-HueteCFR #modelling #representation
Hierarchical naive bayes models for representing user profiles (JFH, LMdC, JMFL, MARM), pp. 711–712.
ECIRECIR-2007-HeD #classification #using
Improving Naive Bayes Text Classifier Using Smoothing Methods (FH, XD), pp. 703–707.
RecSysRecSys-2007-PronkVPT #classification #recommendation
Incorporating user control into recommender systems based on naive bayesian classification (VP, WFJV, AP, MT), pp. 73–80.
SACSAC-2007-JinLSB #automation #categorisation #web
Automatic web pages categorization with ReliefF and Hidden Naive Bayes (XJ, RL, XS, RB), pp. 617–621.
ECIRECIR-2006-YinP #adaptation #classification #rank
Adapting the Naive Bayes Classifier to Rank Procedural Texts (LY, RP), pp. 179–190.
ICMLICML-2006-DenisMR #classification #learning #performance
Efficient learning of Naive Bayes classifiers under class-conditional classification noise (FD, CNM, LR), pp. 265–272.
ICPRICPR-v3-2006-BeveridgeSR #classification #comparison #detection #using
A Comparison of Pixel, Edge andWavelet Features for Face Detection using a Semi-Naive Bayesian Classifier (JRB, JS, BR), pp. 1175–1178.
ICPRICPR-v3-2006-Martinez-ArroyoS #classification #learning
Learning an Optimal Naive Bayes Classifier (MMA, LES), pp. 1236–1239.
ICPRICPR-v4-2006-Martinez-ArroyoS06a #classification #learning
Learning an Optimal Naive Bayes Classifier (MMA, LES), p. 958.
TPDLECDL-2005-KimJC #automation #classification #library #ontology #semantics
Building Semantic Digital Libraries: Automated Ontology Linking by Associative Naïve Bayes Classifier (HK, MGJ, SSC), pp. 500–501.
ICMLICML-2005-JingPR #classification #learning #network #performance
Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes (YJ, VP, JMR), pp. 369–376.
ICMLICML-2005-LowdD #estimation #modelling #probability
Naive Bayes models for probability estimation (DL, PMD), pp. 529–536.
ICMLICML-2005-ZhangJS #ranking
Augmenting naive Bayes for ranking (HZ, LJ, JS), pp. 1020–1027.
KDDKDD-2005-Kolcz #classification
Local sparsity control for naive Bayes with extreme misclassification costs (AK), pp. 128–137.
SACSAC-2005-HanXZG #ambiguity
A hierarchical naive Bayes mixture model for name disambiguation in author citations (HH, WX, HZ, CLG), pp. 1065–1069.
ICPRICPR-v3-2004-SotocaSP #multi #set #using
Attribute Relevance in Multiclass Data Sets Using the Naive Bayes Rule (JMS, JSS, FP), pp. 426–429.
KDDKDD-2004-PavlovBDKP #classification #clustering #documentation #multi #preprocessor
Document preprocessing for naive Bayes classification and clustering with mixture of multinomials (DP, RB, BD, SK, JP), pp. 829–834.
SACSAC-2004-AmorBE #detection
Naive Bayes vs decision trees in intrusion detection systems (NBA, SB, ZE), pp. 420–424.
ECIRECIR-2003-PengS #classification #modelling #n-gram
Combining Naive Bayes and n-Gram Language Models for Text Classification (FP, DS), pp. 335–350.
ICMLICML-2003-CerquidesM #learning #modelling
Tractable Bayesian Learning of Tree Augmented Naive Bayes Models (JC, RLdM), pp. 75–82.
ICMLICML-2003-RennieSTK #classification
Tackling the Poor Assumptions of Naive Bayes Text Classifiers (JDR, LS, JT, DRK), pp. 616–623.
ICMLICML-2002-DashC #classification
Exact model averaging with naive Bayesian classifiers (DD, GFC), pp. 91–98.
ICPRICPR-v1-2002-SebeLCGH #classification #recognition #using
Emotion Recognition Using a Cauchy Naive Bayes Classifier (NS, MSL, IC, AG, TSH), p. 17–?.
ICPRICPR-v2-2002-Keren #identification #using
Painter Identification Using Local Features and Naive Bayes (DK), pp. 474–477.
SIGIRSIGIR-2002-KimRL #classification #estimation #multi #parametricity
A new method of parameter estimation for multinomial naive bayes text classifiers (SBK, HCR, HSL), pp. 391–392.
JCDLJCDL-2001-FrasconiSV #approach #categorisation #documentation #hybrid #multi
Text categorization for multi-page documents: a hybrid naive Bayes HMM approach (PF, GS, AV), pp. 11–20.
ICMLICML-2001-ZadroznyE #classification #probability
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers (BZ, CE), pp. 609–616.
ICMLICML-2001-ZhangL
Learnability of Augmented Naive Bayes in Nonimal Domains (HZ, CXL), pp. 617–623.
ICMLICML-2000-HsuHW #classification #why
Why Discretization Works for Naive Bayesian Classifiers (CNH, HJH, TTW), pp. 399–406.
SIGIRSIGIR-2000-AndroutsopoulosKCS #anti #comparison #email #keyword
An experimental comparison of naive bayesian and keyword-based anti-spam filtering with personal e-mail messages (IA, JK, KC, CDS), pp. 160–167.
SIGIRSIGIR-2000-KimHZ #classification
Text filtering by boosting naive bayes classifiers (YHK, SYH, BTZ), pp. 168–175.
ICMLICML-1999-LangleyS #analysis #classification
Tractable Average-Case Analysis of Naive Bayesian Classifiers (PL, SS), pp. 220–228.
ICMLICML-1999-MladenicG #feature model
Feature Selection for Unbalanced Class Distribution and Naive Bayes (DM, MG), pp. 258–267.
ICMLICML-1999-ZhengWT #lazy evaluation #learning
Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ZZ, GIW, KMT), pp. 493–502.
KDDKDD-1999-MeretakisW #classification #using
Extending Naïve Bayes Classifiers Using Long Itemsets (DM, BW), pp. 165–174.
KDDKDD-1998-RidgewayMRO #classification
Interpretable Boosted Naïve Bayes Classification (GR, DM, TR, JO), pp. 101–104.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.