Tag #naive bayes
52 papers:
TPDL-2015-Nunzio #education #geometry #machine learning- Teaching Machine Learning: A Geometric View of Naïve Bayes (GMDN), pp. 343–346.
CIKM-2015-ViegasGMR #classification #documentation #effectiveness #lazy evaluation #parallel #performance- Parallel Lazy Semi-Naive Bayes Strategies for Effective and Efficient Document Classification (FV, MAG, WM, LCdR), pp. 1071–1080.
SAC-2015-Valverde-Rebaza #modelling #network #online #predict #social- A naïve Bayes model based on ovelapping groups for link prediction in online social networks (JCVR, AV, LB, TdPF, AdAL), pp. 1136–1141.
ICPR-2014-FornoniC #learning #recognition- Scene Recognition with Naive Bayes Non-linear Learning (MF, BC), pp. 3404–3409.
KDIR-KMIS-2013-CheetiSC #adaptation #approach #classification #sentiment #syntax #using- Cross-domain Sentiment Classification using an Adapted Naïve Bayes Approach and Features Derived from Syntax Trees (SC, AS, DC), pp. 169–176.
CIKM-2012-ChenW #automation #classification- Automated feature weighting in naive bayes for high-dimensional data classification (LC, SW), pp. 1243–1252.
SIGIR-2012-NunzioS #classification #data analysis #visual notation- A visual tool for bayesian data analysis: the impact of smoothing on naive bayes text classifiers (GMDN, AS), p. 1002.
ICML-2011-SuSM #classification #multi #scalability #using- Large Scale Text Classification using Semisupervised Multinomial Naive Bayes (JS, JSS, SM), pp. 97–104.
MLDM-2011-LiuM #multi- Smoothing Multinomial Naïve Bayes in the Presence of Imbalance (AL, CEM), pp. 46–59.
DRR-2010-KimLT #classification #online- Naïve Bayes and SVM classifiers for classifying databank accession number sentences from online biomedical articles (JK, DXL, GRT), pp. 1–10.
CIKM-2010-SonPS #classification #estimation #learning- Learning naïve bayes transfer classifier throughclass-wise test distribution estimation (JWS, SBP, HJS), pp. 1729–1732.
ICPR-2010-FuLTZ #classification #learning #music #retrieval- Learning Naive Bayes Classifiers for Music Classification and Retrieval (ZF, GL, KMT, DZ), pp. 4589–4592.
ICPR-2010-GodecLSB #online #random- On-Line Random Naive Bayes for Tracking (MG, CL, AS, HB), pp. 3545–3548.
VLDB-2009-MozafariZ #classification #privacy- Publishing Naive Bayesian Classifiers: Privacy without Accuracy Loss (BM, CZ), pp. 1173–1185.
ECIR-2009-TanCWX #adaptation #analysis #sentiment- Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis (ST, XC, YW, HX), pp. 337–349.
EDM-2008-DesmaraisVG #adaptation #design #framework- Adaptive Test Design with a Naive Bayes Framework (MCD, AV, MG), pp. 48–56.
SIGIR-2008-HueteCFR #modelling #representation- Hierarchical naive bayes models for representing user profiles (JFH, LMdC, JMFL, MARM), pp. 711–712.
ECIR-2007-HeD #classification #using- Improving Naive Bayes Text Classifier Using Smoothing Methods (FH, XD), pp. 703–707.
RecSys-2007-PronkVPT #classification #recommendation- Incorporating user control into recommender systems based on naive bayesian classification (VP, WFJV, AP, MT), pp. 73–80.
SAC-2007-JinLSB #automation #categorisation #web- Automatic web pages categorization with ReliefF and Hidden Naive Bayes (XJ, RL, XS, RB), pp. 617–621.
ECIR-2006-YinP #adaptation #classification #rank- Adapting the Naive Bayes Classifier to Rank Procedural Texts (LY, RP), pp. 179–190.
ICML-2006-DenisMR #classification #learning #performance- Efficient learning of Naive Bayes classifiers under class-conditional classification noise (FD, CNM, LR), pp. 265–272.
ICPR-v3-2006-BeveridgeSR #classification #comparison #detection #using- A Comparison of Pixel, Edge andWavelet Features for Face Detection using a Semi-Naive Bayesian Classifier (JRB, JS, BR), pp. 1175–1178.
ICPR-v3-2006-Martinez-ArroyoS #classification #learning- Learning an Optimal Naive Bayes Classifier (MMA, LES), pp. 1236–1239.
ICPR-v4-2006-Martinez-ArroyoS06a #classification #learning- Learning an Optimal Naive Bayes Classifier (MMA, LES), p. 958.
ECDL-2005-KimJC #automation #classification #library #ontology #semantics- Building Semantic Digital Libraries: Automated Ontology Linking by Associative Naïve Bayes Classifier (HK, MGJ, SSC), pp. 500–501.
ICML-2005-JingPR #classification #learning #network #performance- Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes (YJ, VP, JMR), pp. 369–376.
ICML-2005-LowdD #estimation #modelling #probability- Naive Bayes models for probability estimation (DL, PMD), pp. 529–536.
ICML-2005-ZhangJS #ranking- Augmenting naive Bayes for ranking (HZ, LJ, JS), pp. 1020–1027.
KDD-2005-Kolcz #classification- Local sparsity control for naive Bayes with extreme misclassification costs (AK), pp. 128–137.
SAC-2005-HanXZG #ambiguity- A hierarchical naive Bayes mixture model for name disambiguation in author citations (HH, WX, HZ, CLG), pp. 1065–1069.
ICPR-v3-2004-SotocaSP #multi #set #using- Attribute Relevance in Multiclass Data Sets Using the Naive Bayes Rule (JMS, JSS, FP), pp. 426–429.
KDD-2004-PavlovBDKP #classification #clustering #documentation #multi #preprocessor- Document preprocessing for naive Bayes classification and clustering with mixture of multinomials (DP, RB, BD, SK, JP), pp. 829–834.
SAC-2004-AmorBE #detection- Naive Bayes vs decision trees in intrusion detection systems (NBA, SB, ZE), pp. 420–424.
ECIR-2003-PengS #classification #modelling #n-gram- Combining Naive Bayes and n-Gram Language Models for Text Classification (FP, DS), pp. 335–350.
ICML-2003-CerquidesM #learning #modelling- Tractable Bayesian Learning of Tree Augmented Naive Bayes Models (JC, RLdM), pp. 75–82.
ICML-2003-RennieSTK #classification- Tackling the Poor Assumptions of Naive Bayes Text Classifiers (JDR, LS, JT, DRK), pp. 616–623.
ICML-2002-DashC #classification- Exact model averaging with naive Bayesian classifiers (DD, GFC), pp. 91–98.
ICPR-v1-2002-SebeLCGH #classification #recognition #using- Emotion Recognition Using a Cauchy Naive Bayes Classifier (NS, MSL, IC, AG, TSH), p. 17–?.
ICPR-v2-2002-Keren #identification #using- Painter Identification Using Local Features and Naive Bayes (DK), pp. 474–477.
SIGIR-2002-KimRL #classification #estimation #multi #parametricity- A new method of parameter estimation for multinomial naive bayes text classifiers (SBK, HCR, HSL), pp. 391–392.
JCDL-2001-FrasconiSV #approach #categorisation #documentation #hybrid #multi- Text categorization for multi-page documents: a hybrid naive Bayes HMM approach (PF, GS, AV), pp. 11–20.
ICML-2001-ZadroznyE #classification #probability- Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers (BZ, CE), pp. 609–616.
ICML-2001-ZhangL - Learnability of Augmented Naive Bayes in Nonimal Domains (HZ, CXL), pp. 617–623.
ICML-2000-HsuHW #classification #why- Why Discretization Works for Naive Bayesian Classifiers (CNH, HJH, TTW), pp. 399–406.
SIGIR-2000-AndroutsopoulosKCS #anti #comparison #email #keyword- An experimental comparison of naive bayesian and keyword-based anti-spam filtering with personal e-mail messages (IA, JK, KC, CDS), pp. 160–167.
SIGIR-2000-KimHZ #classification- Text filtering by boosting naive bayes classifiers (YHK, SYH, BTZ), pp. 168–175.
ICML-1999-LangleyS #analysis #classification- Tractable Average-Case Analysis of Naive Bayesian Classifiers (PL, SS), pp. 220–228.
ICML-1999-MladenicG #feature model- Feature Selection for Unbalanced Class Distribution and Naive Bayes (DM, MG), pp. 258–267.
ICML-1999-ZhengWT #lazy evaluation #learning- Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ZZ, GIW, KMT), pp. 493–502.
KDD-1999-MeretakisW #classification #using- Extending Naïve Bayes Classifiers Using Long Itemsets (DM, BW), pp. 165–174.
KDD-1998-RidgewayMRO #classification- Interpretable Boosted Naïve Bayes Classification (GR, DM, TR, JO), pp. 101–104.