BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
linear (8)
kernel (7)
use (7)
structur (6)
classif (6)

Stem svms$ (all stems)

38 papers:

CIKMCIKM-2014-MaoWHO #classification #learning #linear #multi
Nonlinear Classification via Linear SVMs and Multi-Task Learning (XM, OW, WH, PO), pp. 1955–1958.
CIKMCIKM-2014-SchneiderBV #linear #multi
Solving Linear SVMs with Multiple 1D Projections (JS, JB, MV), pp. 221–230.
ICPRICPR-2014-ChernousovaLTMW #parametricity #validation
Non-enumerative Cross Validation for the Determination of Structural Parameters in Feature-Selective SVMs (EC, PL, AT, VM, DW), pp. 3654–3659.
ICMLICML-c1-2013-Lacoste-JulienJSP #coordination #optimisation
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs (SLJ, MJ, MWS, PP), pp. 53–61.
ICMLICML-c3-2013-TakacBRS
Mini-Batch Primal and Dual Methods for SVMs (MT, ASB, PR, NS), pp. 1022–1030.
ICMLICML-2012-MalisiewiczSGE #detection #image #retrieval #visual notation
Exemplar-SVMs for Visual Ob ject Detection, Label Transfer and Image Retrieval (TM, AS, AG, AAE), p. 4.
CIAACIAA-J-2010-AllauzenCM11 #algorithm #coordination #kernel
A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels (CA, CC, MM), pp. 1761–1779.
CIKMCIKM-2011-SelvarajBSS #classification #dataset
Semi-supervised SVMs for classification with unknown class proportions and a small labeled dataset (SKS, BB, SS, SKS), pp. 653–662.
KDDKDD-2011-CotterSK #approach #kernel
A GPU-tailored approach for training kernelized SVMs (AC, NS, JK), pp. 805–813.
CIAACIAA-2010-AllauzenCM #automaton #kernel #scalability
Large-Scale Training of SVMs with Automata Kernels (CA, CC, MM), pp. 17–27.
ICMLICML-2010-Masnadi-ShiraziV #elicitation #probability
Risk minimization, probability elicitation, and cost-sensitive SVMs (HMS, NV), pp. 759–766.
ICMLICML-2010-SonnenburgF #framework #linear #named
COFFIN: A Computational Framework for Linear SVMs (SS, VF), pp. 999–1006.
ICMLICML-2009-YuJ #learning
Learning structural SVMs with latent variables (CNJY, TJ), pp. 1169–1176.
ICMLICML-2008-FinleyJ
Training structural SVMs when exact inference is intractable (TF, TJ), pp. 304–311.
ICMLICML-2008-YueJ #predict #set #using
Predicting diverse subsets using structural SVMs (YY, TJ), pp. 1224–1231.
ICPRICPR-2008-YenCWWC #using #video
A scene-based video watermarking technique using SVMs (SHY, HWC, CJW, PSPW, MCC), pp. 1–4.
KDDKDD-2008-KeerthiSCHL #linear #multi #scalability
A sequential dual method for large scale multi-class linear svms (SSK, SS, KWC, CJH, CJL), pp. 408–416.
KDDKDD-2008-YuJ #kernel #using
Training structural svms with kernels using sampled cuts (CNJY, TJ), pp. 794–802.
SIGIRSIGIR-2007-SculleyW #online
Relaxed online SVMs for spam filtering (DS, GW), pp. 415–422.
ICMLICML-2006-ChapelleCZ #continuation
A continuation method for semi-supervised SVMs (OC, MC, AZ), pp. 185–192.
ICMLICML-2006-PandaCW #bound #concept #detection
Concept boundary detection for speeding up SVMs (NP, EYC, GW), pp. 681–688.
ICMLICML-2006-ShivaswamyJ #invariant #permutation
Permutation invariant SVMs (PKS, TJ), pp. 817–824.
ICPRICPR-v2-2006-Huang #kernel #predict
A New Kernel Based on Weighted Cross-Correlation Coefficient for SVMs and Its Application on Prediction of T-cell Epitopes (JH), pp. 691–694.
ICPRICPR-v3-2006-ArreolaFB #classification #linear #performance #using
Fast Support Vector Machine Classification using linear SVMs (KZA, JF, HB), pp. 366–369.
ICPRICPR-v3-2006-LiGYCG #feature model
Facial Feature Selection Based on SVMs by Regularized Risk Minimization (WL, WG, LY, WC, XG), pp. 540–543.
KDDKDD-2006-Joachims #linear
Training linear SVMs in linear time (TJ), pp. 217–226.
SIGIRSIGIR-2006-SindhwaniK #linear #scalability
Large scale semi-supervised linear SVMs (VS, SSK), pp. 477–484.
ICMLICML-2005-Keerthi #classification #effectiveness #feature model
Generalized LARS as an effective feature selection tool for text classification with SVMs (SSK), pp. 417–424.
ICMLICML-2004-CollobertB
Links between perceptrons, MLPs and SVMs (RC, SB).
ICMLICML-2004-GabrilovichM #categorisation #feature model #using
Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4.5 (EG, SM).
ICMLICML-2004-Jebara #kernel #multi
Multi-task feature and kernel selection for SVMs (TJ).
ICPRICPR-v2-2004-IurgelR #classification #documentation #probability #using
Spoken Document Classification with SVMs Using Linguistic Unit Weighting and Probabilistic Couplers (UI, GR), pp. 667–670.
ICPRICPR-v3-2004-PozdnoukhovB #classification #image #invariant #kernel
Tangent Vector Kernels for Invariant Image Classification with SVMs (AP, SB), pp. 486–489.
ICPRICPR-v3-2004-YingK #evaluation #performance
Fast Leave-One-Out Evaluation and Improvement on Inference for LS-SVMs (ZY, KCK), pp. 494–497.
ICPRICPR-v4-2004-WangJ #detection #multi
Multi-View Face Detection under Complex Scene based on Combined SVMs (PW, QJ), pp. 179–182.
DRRDRR-2003-RahmanTA #heuristic #hybrid #web
Exploring a hybrid of support vector machines (SVMs) and a heuristic-based system in classifying web pages (AFRR, YT, HA), pp. 120–127.
ICMLICML-2003-Bi #multi #programming
Multi-Objective Programming in SVMs (JB), pp. 35–42.
KDDKDD-2003-YuYH #clustering #scalability #set #using
Classifying large data sets using SVMs with hierarchical clusters (HY, JY, JH), pp. 306–315.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.