Travelled to:
1 × Canada
1 × Finland
1 × France
1 × Germany
1 × Israel
1 × United Kingdom
3 × China
4 × USA
Collaborated with:
D.B.Dunson X.Liao J.W.Paisley Y.Xue M.Zhou E.Salazar Y.Wang H.Li R.Henao L.Li J.G.Silva S.Ji W.Lian V.Rao G.Sapiro M.R.D.Rodrigues A.R.Calderbank S.Han X.Chen H.Chen M.Liu D.M.Blei X.Zhang L.Ren K.Ni B.Eriksson Y.Qi D.Liu D.Williams Z.Gan C.Chen D.E.Carlson J.E.Lucas X.Yuan E.Tsalik R.Langley L.Wang A.Razi R.Bogdan A.Gorka A.Hariri M.Chen W.R.Carson B.Chen G.Polatkan A.K.Zaas C.W.Woods G.S.Ginsburg P.Rai S.Guo G.Chen Q.An C.Wang I.Shterev E.Wang
Talks about:
process (13) model (9) factor (6) learn (6) analysi (5) data (5) beta (5) topic (4) stick (4) multi (4)
Person: Lawrence Carin
DBLP: Carin:Lawrence
Contributed to:
Wrote 32 papers:
- ICML-2015-GanCHCC #analysis #modelling #scalability #topic
- Scalable Deep Poisson Factor Analysis for Topic Modeling (ZG, CC, RH, DEC, LC), pp. 1823–1832.
- ICML-2015-LianHRLC #multi #predict #process
- A Multitask Point Process Predictive Model (WL, RH, VR, JEL, LC), pp. 2030–2038.
- ICML-2015-YuanHTLC #modelling
- Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood (XY, RH, ET, RL, LC), pp. 1254–1263.
- ICML-c1-2014-LianREC #correlation #markov #modelling #process
- Modeling Correlated Arrival Events with Latent Semi-Markov Processes (WL, VR, BE, LC), pp. 396–404.
- ICML-c2-2014-RaiWGCDC #composition #multi #rank #scalability
- Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors (PR, YW, SG, GC, DBD, LC), pp. 1800–1808.
- ICML-c2-2014-WangRRCC #design #metric
- Nonlinear Information-Theoretic Compressive Measurement Design (LW, AR, MRDR, ARC, LC), pp. 1161–1169.
- ICML-c2-2013-SalazarBGHC
- Exploring the Mind: Integrating Questionnaires and fMRI (ES, RB, AG, AH, LC), pp. 262–270.
- ICML-2012-ChenCRCC #analysis #linear
- Communications Inspired Linear Discriminant Analysis (MC, WRC, MRDR, LC, ARC), p. 196.
- ICML-2012-HanLC #learning #modelling #multi
- Cross-Domain Multitask Learning with Latent Probit Models (SH, XL, LC), p. 51.
- ICML-2012-SalazarC #category theory #relational
- Inferring Latent Structure From Mixed Real and Categorical Relational Data (ES, LC), p. 219.
- ICML-2012-WangC #process
- Levy Measure Decompositions for the Beta and Gamma Processes (YW, LC), p. 68.
- ICML-2012-ZhouLDC
- Lognormal and Gamma Mixed Negative Binomial Regression (MZ, LL, DBD, LC), p. 113.
- KDD-2012-ChenZC #topic
- The contextual focused topic model (XC, MZ, LC), pp. 96–104.
- KDD-2012-SilvaC #learning #matrix #online
- Active learning for online bayesian matrix factorization (JGS, LC), pp. 325–333.
- ICML-2011-ChenDC #markov #modelling #parametricity #topic
- Topic Modeling with Nonparametric Markov Tree (HC, DBD, LC), pp. 377–384.
- ICML-2011-ChenPSDC #analysis #learning #process
- The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning (BC, GP, GS, DBD, LC), pp. 361–368.
- ICML-2011-LiZSC #integration #learning #modelling #on the #taxonomy #topic
- On the Integration of Topic Modeling and Dictionary Learning (LL, MZ, GS, LC), pp. 625–632.
- ICML-2011-LiuLC #infinity #policy #representation
- The Infinite Regionalized Policy Representation (ML, XL, LC), pp. 769–776.
- ICML-2011-PaisleyCB #process
- Variational Inference for Stick-Breaking Beta Process Priors (JWP, LC, DMB), pp. 889–896.
- ICML-2011-ZhangDC #infinity
- Tree-Structured Infinite Sparse Factor Model (XZ, DBD, LC), pp. 785–792.
- ICML-2010-PaisleyZWGC #process
- A Stick-Breaking Construction of the Beta Process (JWP, AKZ, CWW, GSG, LC), pp. 847–854.
- ICML-2009-PaisleyC #analysis #parametricity #process
- Nonparametric factor analysis with beta process priors (JWP, LC), pp. 777–784.
- ICML-2008-AnWSWCD #analysis #image #kernel #multi #process
- Hierarchical kernel stick-breaking process for multi-task image analysis (QA, CW, IS, EW, LC, DBD), pp. 17–24.
- ICML-2008-QiLDC #multi #process
- Multi-task compressive sensing with Dirichlet process priors (YQ, DL, DBD, LC), pp. 768–775.
- ICML-2008-RenDC #process
- The dynamic hierarchical Dirichlet process (LR, DBD, LC), pp. 824–831.
- ICML-2007-JiC #optimisation
- Bayesian compressive sensing and projection optimization (SJ, LC), pp. 377–384.
- ICML-2007-LiaoLC #classification #semistructured data
- Quadratically gated mixture of experts for incomplete data classification (XL, HL, LC), pp. 553–560.
- ICML-2007-NiCD #learning #multi #process
- Multi-task learning for sequential data via iHMMs and the nested Dirichlet process (KN, LC, DBD), pp. 689–696.
- ICML-2007-XueDC #flexibility #learning #matrix #multi #process
- The matrix stick-breaking process for flexible multi-task learning (YX, DBD, LC), pp. 1063–1070.
- ICML-2006-LiLC #markov #process
- Region-based value iteration for partially observable Markov decision processes (HL, XL, LC), pp. 561–568.
- ICML-2005-LiaoXC #data flow
- Logistic regression with an auxiliary data source (XL, YX, LC), pp. 505–512.
- ICML-2005-WilliamsLXC #classification #using
- Incomplete-data classification using logistic regression (DW, XL, YX, LC), pp. 972–979.