Travelled to:
1 × Austria
1 × Finland
2 × Canada
2 × China
3 × USA
Collaborated with:
R.Urtasun H.O.Song R.B.Girshick L.Morency A.Pentland Y.Jia O.Vinyals A.Quattoni X.Carreras M.Collins S.Jegelka J.Mairal Z.Harchaoui D.J.Fleet A.Geiger J.Popovic N.D.Lawrence D.Lee Haoran Tang Jeffrey O. Zhang Huazhe Xu P.Abbeel J.Donahue J.Hoffman N.Zhang E.Tzeng
Talks about:
activ (3) discrimin (2) recognit (2) variabl (2) process (2) latent (2) featur (2) model (2) learn (2) deep (2)
Person: Trevor Darrell
DBLP: Darrell:Trevor
Contributed to:
Wrote 10 papers:
- ICML-c1-2014-DonahueJVHZTD #named #recognition #visual notation
- DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition (JD, YJ, OV, JH, NZ, ET, TD), pp. 647–655.
- ICML-c2-2014-SongGJMHD #learning #locality #on the
- On learning to localize objects with minimal supervision (HOS, RBG, SJ, JM, ZH, TD), pp. 1611–1619.
- ICML-c1-2013-GirshickSD
- Discriminatively Activated Sparselets (RBG, HOS, TD), pp. 196–204.
- ICML-c3-2013-JiaVD #on the
- On Compact Codes for Spatially Pooled Features (YJ, OV, TD), pp. 549–557.
- ICML-2009-QuattoniCCD #infinity #performance
- An efficient projection for l1,infinity regularization (AQ, XC, MC, TD), pp. 857–864.
- ICML-2008-UrtasunFGPDL #modelling
- Topologically-constrained latent variable models (RU, DJF, AG, JP, TD, NDL), pp. 1080–1087.
- ICML-2007-UrtasunD #classification #process
- Discriminative Gaussian process latent variable model for classification (RU, TD), pp. 927–934.
- ICPR-v4-2002-MorencyD #constraints #using
- Stereo Tracking Using ICP and Normal Flow Constraint (LPM, TD), p. 367–?.
- ICPR-1996-DarrellP #gesture #markov #process #recognition #using
- Active gesture recognition using partially observable Markov decision processes (TD, AP), pp. 984–988.
- AIIDE-2018-LeeTZXDA #architecture #composition #learning
- Modular Architecture for StarCraft II with Deep Reinforcement Learning (DL, HT, JOZ, HX, TD, PA), pp. 187–193.