Travelled to:
1 × Croatia
1 × Finland
1 × Italy
1 × Japan
1 × Poland
1 × Spain
1 × United Kingdom
2 × Canada
2 × USA
Collaborated with:
H.Chen B.Larose ∅ A.A.Bulatov A.A.Krokhin M.Thurley C.Carvalho A.Atserias L.Egri P.Hell A.Rafiey
Talks about:
tractabl (4) quantifi (4) problem (4) constraint (3) satisfact (3) formula (3) descript (2) datalog (2) consist (2) complex (2)
Person: Víctor Dalmau
DBLP: Dalmau:V=iacute=ctor
Contributed to:
Wrote 12 papers:
- LICS-2015-DalmauEHLR #complexity #problem
- Descriptive Complexity of List H-Coloring Problems in Logspace: A Refined Dichotomy (VD, LE, PH, BL, AR), pp. 487–498.
- CSL-2013-BulatovDT #approximate #complexity
- Descriptive complexity of approximate counting CSPs (AAB, VD, MT), pp. 149–164.
- LICS-2012-ChenD #quantifier
- Decomposing Quantified Conjunctive (or Disjunctive) Formulas (HC, VD), pp. 205–214.
- LICS-2008-CarvalhoDK #constraints #problem
- Caterpillar Duality for Constraint Satisfaction Problems (CC, VD, AAK), pp. 307–316.
- LICS-2008-DalmauL #datalog #symmetry
- Maltsev + Datalog --> Symmetric Datalog (VD, BL), pp. 297–306.
- ICALP-2007-AtseriasBD #on the #power of
- On the Power of k -Consistency (AA, AAB, VD), pp. 279–290.
- CSL-2005-ChenD #algorithm #consistency #constraints #game studies #quantifier
- From Pebble Games to Tractability: An Ambidextrous Consistency Algorithm for Quantified Constraint Satisfaction (HC, VD), pp. 232–247.
- LICS-2005-Dalmau
- Generalized Majority-Minority Operations are Tractable (VD), pp. 438–447.
- LICS-2004-DalmauKL #first-order #graph #problem #reflexive
- First-Order Definable Retraction Problems for Posets and Reflexive Graph (VD, AAK, BL), pp. 232–241.
- SAT-2004-ChenD #algebra #quantifier
- Looking Algebraically at Tractable Quantified Boolean Formulas (HC, VD), pp. 224–229.
- SAT-J-2004-ChenD05 #algebra #quantifier
- Looking Algebraically at Tractable Quantified Boolean Formulas (HC, VD), pp. 71–79.
- ICALP-2002-Dalmau #constraints #nondeterminism #problem
- Constraint Satisfaction Problems in Non-deterministic Logarithmic Space (VD), pp. 414–425.