Travelled to:
1 × Canada
1 × Denmark
1 × Finland
1 × Greece
1 × Japan
1 × Russia
1 × Spain
1 × Taiwan
1 × USA
1 × United Kingdom
2 × Austria
Collaborated with:
∅ S.Rubin F.Stephan D.Berdinsky B.F.Csima A.Nies M.Ganardi A.Gandhi J.Liu H.Ishihara C.S.Calude E.Calude G.Hjorth A.Montalbán
Talks about:
structur (7) automat (7) algebra (3) abstract (2) partial (2) extend (2) decid (2) determinist (1) algorithm (1) reachabl (1)
Person: Bakhadyr Khoussainov
DBLP: Khoussainov:Bakhadyr
Contributed to:
Wrote 13 papers:
- DLT-2014-BerdinskyK #automation #graph #on the #transitive
- On Automatic Transitive Graphs (DB, BK), pp. 1–12.
- LICS-CSL-2014-Khoussainov #infinity #random
- A quest for algorithmically random infinite structures (BK), p. 9.
- DLT-2012-GandhiKL #complexity #finite #on the #word
- On State Complexity of Finite Word and Tree Languages (AG, BK, JL), pp. 392–403.
- LATA-2011-Khoussainov #automation
- Automatic Structures and Groups (BK), pp. 22–40.
- DLT-2008-CsimaK #decidability #question #reachability
- When Is Reachability Intrinsically Decidable? (BFC, BK), pp. 216–227.
- LICS-2008-HjorthKMN #automation
- From Automatic Structures to Borel Structures (GH, BK, AM, AN), pp. 431–441.
- CSL-2005-KhoussainovR #algebra #decidability
- Decidability of Term Algebras Extending Partial Algebras (BK, SR), pp. 292–308.
- LICS-2004-KhoussainovNRS #automation
- Automatic Structures: Richness and Limitations (BK, AN, SR, FS), pp. 44–53.
- CSL-2003-Khoussainov #algebra #data type #on the #specification
- On Algebraic Specifications of Abstract Data Types (BK), pp. 299–313.
- LICS-2003-KhoussainovRS #automation #on the #partial order
- On Automatic Partial Orders (BK, SR, FS), pp. 168–177.
- LICS-2002-IshiharaKR #automation
- Some Results on Automatic Structures (HI, BK, SR), p. 235–?.
- DLT-1997-CaludeCK #automaton #simulation
- Deterministic Automata: Simulation, Universality and Minimality. Extended Abstract (CSC, EC, BK), pp. 519–537.
- CSL-2020-GanardiK #automation #equivalence #polynomial
- Automatic Equivalence Structures of Polynomial Growth (MG, BK), p. 16.