Travelled to:
1 × Australia
1 × Austria
1 × France
1 × Greece
1 × Korea
1 × Norway
7 × USA
Collaborated with:
D.Agarwal X.Wang R.Ramakrishnan P.Elango L.Zhang J.Yang L.Chen J.Yang B.Long K.LeFevre A.Dasgupta J.Guo B.L.Tseng S.Chaudhuri V.Ganti R.Kaushik J.W.Shavlik P.Tamma Y.Lin P.Barford V.Yegneswaran Q.He Y.Ma P.Shivaswamy Z.Hua G.Lebanon H.Tseng R.Gupta J.Hartman A.Iyer S.Kolar A.Singh
Talks about:
recommend (3) latent (3) factor (3) regress (2) privaci (2) predict (2) person (2) calibr (2) shape (2) reput (2)
Person: Bee-Chung Chen
DBLP: Chen:Bee=Chung
Contributed to:
Wrote 18 papers:
- KDD-2015-AgarwalCHHLMSTY #personalisation
- Personalizing LinkedIn Feed (DA, BCC, QH, ZH, GL, YM, PS, HPT, JY, LZ), pp. 1651–1660.
- KDD-2014-AgarwalCGHHIKMSSZ #process #ranking
- Activity ranking in LinkedIn feed (DA, BCC, RG, JH, QH, AI, SK, YM, PS, AS, LZ), pp. 1603–1612.
- KDD-2013-YangCA #social
- Estimating sharer reputation via social data calibration (JY, BCC, DA), pp. 59–67.
- CIKM-2012-AgarwalCW #multi #ranking #using
- Multi-faceted ranking of news articles using post-read actions (DA, BCC, XW), pp. 694–703.
- SIGIR-2012-AgarwalCEW #online #personalisation #recommendation
- Personalized click shaping through lagrangian duality for online recommendation (DA, BCC, PE, XW), pp. 485–494.
- SIGIR-2012-ChenDWY #community
- Vote calibration in community question-answering systems (BCC, AD, XW, JY), pp. 781–790.
- KDD-2011-AgarwalCEW #multi
- Click shaping to optimize multiple objectives (DA, BCC, PE, XW), pp. 132–140.
- KDD-2011-AgarwalCL #locality #modelling #multi #recommendation
- Localized factor models for multi-context recommendation (DA, BCC, BL), pp. 609–617.
- KDD-2011-ChenGTY #rating
- User reputation in a comment rating environment (BCC, JG, BLT, JY), pp. 159–167.
- RecSys-2011-ZhangAC #flexibility #matrix
- Generalizing matrix factorization through flexible regression priors (LZ, DA, BCC), pp. 13–20.
- SIGMOD-2011-AgarwalC
- Latent OLAP: data cubes over latent variables (DA, BCC), pp. 877–888.
- KDD-2010-AgarwalCE #learning #online #performance #recommendation
- Fast online learning through offline initialization for time-sensitive recommendation (DA, BCC, PE), pp. 703–712.
- KDD-2009-AgarwalC #modelling
- Regression-based latent factor models (DA, BCC), pp. 19–28.
- VLDB-2007-ChaudhuriCGK #design #performance #query
- Example-driven design of efficient record matching queries (SC, BCC, VG, RK), pp. 327–338.
- VLDB-2007-ChenRL #multi #privacy
- Privacy Skyline: Privacy with Multidimensional Adversarial Knowledge (BCC, RR, KL), pp. 770–781.
- VLDB-2006-0003RBCY #metric #set
- Composite Subset Measures (LC, RR, PB, BCC, VY), pp. 403–414.
- VLDB-2006-ChenRST #analysis #predict
- Bellwether Analysis: Predicting Global Aggregates from Local Regions (BCC, RR, JWS, PT), pp. 655–666.
- VLDB-2005-ChenCLR #predict
- Prediction Cubes (BCC, LC, YL, RR), pp. 982–993.