448 papers:
- CASE-2015-SterlingSZC #algorithm #optimisation #parametricity #process
- Welding parameter optimization based on Gaussian process regression Bayesian optimization algorithm (DS, TS, YZ, HC), pp. 1490–1496.
- ICSME-2015-EkelundE #evaluation #industrial #performance #testing
- Efficient regression testing based on test history: An industrial evaluation (EDE, EE), pp. 449–457.
- SANER-2015-BezemerPG #comprehension #difference #graph #performance #using
- Understanding software performance regressions using differential flame graphs (CPB, JP, BG), pp. 535–539.
- SCAM-2015-GhanavatiA #automation #memory management #testing
- Automated memory leak diagnosis by regression testing (MG, AA), pp. 191–200.
- ICEIS-v2-2015-SariK #analysis #debugging #monitoring #predict
- Bug Prediction for an ATM Monitoring Software — Use of Logistic Regression Analysis for Bug Prediction (ÖS, OK), pp. 382–387.
- ICEIS-v2-2015-ThommazoCHGPBF #complexity #dependence #requirements #testing #using
- Using the Dependence Level Among Requirements to Priorize the Regression Testing Set and Characterize the Complexity of Requirements Change (ADT, KC, EMH, GG, JP, AB, SF), pp. 231–241.
- ICML-2015-HoangHL #big data #framework #modelling #probability #process
- A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data (TNH, QMH, BKHL), pp. 569–578.
- ICML-2015-KuklianskyS #linear #performance
- Attribute Efficient Linear Regression with Distribution-Dependent Sampling (DK, OS), pp. 153–161.
- KDD-2015-ChaoHZ #analysis #kernel
- Optimal Kernel Group Transformation for Exploratory Regression Analysis and Graphics (PC, QH, MZ), pp. 905–914.
- KDD-2015-FlaxmanWS
- Who Supported Obama in 2012?: Ecological Inference through Distribution Regression (SRF, YXW, AJS), pp. 289–298.
- KDD-2015-MomtazpourZRSR #cyber-physical #invariant #using
- Analyzing Invariants in Cyber-Physical Systems using Latent Factor Regression (MM, JZ, SR, RKS, NR), pp. 2009–2018.
- MLDM-2015-KrasotkinaM15a #analysis #approach
- A Bayesian Approach to Sparse Cox Regression in High-Dimentional Survival Analysis (OK, VM), pp. 425–437.
- SEKE-2015-Hori0TO #comparison #image #testing #web
- An Oracle based on Image Comparison for Regression Testing of Web Applications (AH, ST, HT, MO), pp. 639–645.
- SEKE-2015-WangJC #similarity #testing
- Similarity-based regression test case prioritization (RW, SJ, DC), pp. 358–363.
- SIGIR-2015-LuccheseNOPTV #algorithm #documentation #named #performance #rank
- QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees (CL, FMN, SO, RP, NT, RV), pp. 73–82.
- ECMFA-J-2012-PuissantSM15 #automation #consistency #nondeterminism #using
- Resolving model inconsistencies using automated regression planning (JPP, RVDS, TM), pp. 461–481.
- SAC-2015-BlombergBR #evolution #robust
- Evolving regression trees robust to missing data (LCB, RCB, DDR), pp. 102–109.
- SAC-2015-ChaudhuriMG #network #predict #using
- QoS prediction for network data traffic using hierarchical modified regularized least squares rough support vector regression (AC, SM, SKG), pp. 659–661.
- ESEC-FSE-2015-ShiYGM #reduction #testing
- Comparing and combining test-suite reduction and regression test selection (AS, TY, AG, DM), pp. 237–247.
- ICSE-v1-2015-SahaZKP #approach #information retrieval #testing
- An Information Retrieval Approach for Regression Test Prioritization Based on Program Changes (RKS, LZ, SK, DEP), pp. 268–279.
- ICSE-v1-2015-TanR #automation #named
- relifix: Automated Repair of Software Regressions (SHT, AR), pp. 471–482.
- ICSE-v1-2015-TerragniCZ #concurrent #effectiveness #named #source code #testing
- RECONTEST: Effective Regression Testing of Concurrent Programs (VT, SCC, CZ), pp. 246–256.
- ICSE-v1-2015-YiYLZW #analysis #testing
- A Synergistic Analysis Method for Explaining Failed Regression Tests (QY, ZY, JL, CZ, CW), pp. 257–267.
- ICSE-v2-2015-FooJAHZF #automation #case study #detection #industrial #performance
- An Industrial Case Study on the Automated Detection of Performance Regressions in Heterogeneous Environments (KCF, ZMJ, BA, AEH, YZ, PF), pp. 159–168.
- SPLC-2015-ValovGC #comparison #empirical #performance #predict #variability
- Empirical comparison of regression methods for variability-aware performance prediction (PV, JG, KC), pp. 186–190.
- ISSTA-2015-EpitropakisYHB #empirical #evaluation #multi #performance #testing
- Empirical evaluation of pareto efficient multi-objective regression test case prioritisation (MGE, SY, MH, EKB), pp. 234–245.
- ISSTA-2015-GligoricEM #dependence #testing
- Practical regression test selection with dynamic file dependencies (MG, LE, DM), pp. 211–222.
- QoSA-2014-JohnsenLPH #dependence #graph #modelling #slicing #verification
- Regression verification of AADL models through slicing of system dependence graphs (AJ, KL, PP, KH), pp. 103–112.
- ASE-2014-FelsingGKRU #automation #verification
- Automating regression verification (DF, SG, VK, PR, MU), pp. 349–360.
- CASE-2014-MahlerKLSMKPWFAG #learning #process #using
- Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression (JM, SK, ML, SS, AM, BK, SP, JW, MF, PA, KYG), pp. 532–539.
- DAC-2014-WangOC #optimisation #performance #polynomial #synthesis
- Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization (YW, MO, CC), p. 6.
- MSR-2014-NguyenNHNF #automation #case study #identification #industrial #performance
- An industrial case study of automatically identifying performance regression-causes (THDN, MN, AEH, MNN, PF), pp. 232–241.
- CHI-2014-Oulasvirta #automation #human-computer #modelling
- Automated nonlinear regression modeling for HCI (AO), pp. 3899–3902.
- CIKM-2014-KangLSSK #coordination #distributed #probability
- Data/Feature Distributed Stochastic Coordinate Descent for Logistic Regression (DK, WL, KS, LS, UK), pp. 1269–1278.
- CIKM-2014-VinzamuriLR #learning
- Active Learning based Survival Regression for Censored Data (BV, YL, CKR), pp. 241–250.
- ECIR-2014-Aly #normalisation #parametricity #using
- Score Normalization Using Logistic Regression with Expected Parameters (RA), pp. 579–584.
- ICML-c1-2014-RabinovichB #topic
- The Inverse Regression Topic Model (MR, DMB), pp. 199–207.
- ICML-c2-2014-0001NKA #estimation #probability
- GEV-Canonical Regression for Accurate Binary Class Probability Estimation when One Class is Rare (AA, HN, SK, SA), pp. 1989–1997.
- ICML-c2-2014-GregorDMBW #network
- Deep AutoRegressive Networks (KG, ID, AM, CB, DW), pp. 1242–1250.
- ICML-c2-2014-HsuS
- Heavy-tailed regression with a generalized median-of-means (DH, SS), pp. 37–45.
- ICML-c2-2014-KarninH #linear
- Hard-Margin Active Linear Regression (ZSK, EH), pp. 883–891.
- ICML-c2-2014-YangLR #linear
- Elementary Estimators for High-Dimensional Linear Regression (EY, ACL, PDR), pp. 388–396.
- ICML-c2-2014-YiCS #linear
- Alternating Minimization for Mixed Linear Regression (XY, CC, SS), pp. 613–621.
- ICPR-2014-GuerreroR #process
- Circular Regression Based on Gaussian Processes (PG, JRdS), pp. 3672–3677.
- ICPR-2014-HuDG #experience #learning #online #recognition #visual notation
- Online Regression of Grandmother-Cell Responses with Visual Experience Learning for Face Recognition (JH, WD, JG), pp. 4606–4611.
- ICPR-2014-LiYLMDWX #higher-order #multi
- Multiple-Output Regression with High-Order Structure Information (CL, LY, QL, FM, WD, YW, JX), pp. 3868–3873.
- ICPR-2014-NieJ #learning #linear #using
- Feature Learning Using Bayesian Linear Regression Model (SN, QJ), pp. 1502–1507.
- ICPR-2014-Nilsson #polynomial #using
- Elastic Net Regularized Logistic Regression Using Cubic Majorization (MN), pp. 3446–3451.
- ICPR-2014-OuyedA #classification #kernel
- Feature Relevance for Kernel Logistic Regression and Application to Action Classification (OO, MSA), pp. 1325–1329.
- ICPR-2014-RingLRE #assessment #using
- A Two-Stage Regression Using Bioimpedance and Temperature for Hydration Assessment During Sports (MR, CL, MR, BE), pp. 4519–4524.
- ICPR-2014-TabuchiTDIMKK #estimation #memory management #multi #people
- Spatial People Density Estimation from Multiple Viewpoints by Memory Based Regression (YT, TT, DD, II, HM, TK, KK), pp. 2209–2214.
- ICPR-2014-YangXWL #learning #realtime
- Real-Time Tracking via Deformable Structure Regression Learning (XY, QX, SW, PL), pp. 2179–2184.
- KDD-2014-SahooHL #kernel #multi #online
- Online multiple kernel regression (DS, SCHH, BL), pp. 293–302.
- KDD-2014-WangZQWD #multi #predict #risk management
- Clinical risk prediction with multilinear sparse logistic regression (FW, PZ, BQ, XW, ID), pp. 145–154.
- KDD-2014-ZhouT #graph #multi
- Multi-task copula by sparse graph regression (TZ, DT), pp. 771–780.
- KR-2014-KazemiBKNP #relational
- Relational Logistic Regression (SMK, DB, KK, SN, DP).
- MLDM-2014-SenkoD #multi
- Multiple Regression Method Based on Unexpandable and Irreducible Convex Combinations (OVS, AD), pp. 43–57.
- FSE-2014-ElbaumRP #development #integration #testing
- Techniques for improving regression testing in continuous integration development environments (SGE, GR, JP), pp. 235–245.
- ICSE-2014-HuangMSZ #analysis #performance #testing
- Performance regression testing target prioritization via performance risk analysis (PH, XM, DS, YZ), pp. 60–71.
- ICSE-2014-YuSR #automation #framework #named #testing
- SimRT: an automated framework to support regression testing for data races (TY, WSa, GR), pp. 48–59.
- CAV-2014-CernyHRRT #concurrent #synthesis
- Regression-Free Synthesis for Concurrency (PC, TAH, AR, LR, TT), pp. 568–584.
- CAV-2014-GligoricMSEM #distributed #testing
- Regression Test Selection for Distributed Software Histories (MG, RM, RS, LE, DM), pp. 293–309.
- ICST-2014-EngstromMRB #testing #visual notation
- Supporting Regression Test Scoping with Visual Analytics (EE, MM, PR, MB), pp. 283–292.
- ICTSS-2014-PalmieriCO #automation #testing
- Cutting Time-to-Market by Adopting Automated Regression Testing in a Simulated Environment (MP, AC, AÖ), pp. 129–144.
- ISSTA-2014-BohmeR #complexity #fault #named
- CoREBench: studying complexity of regression errors (MB, AR), pp. 105–115.
- ISSTA-2014-PastoreMHFSSM #testing
- Verification-aided regression testing (FP, LM, AEJH, GF, NS, SS, AM), pp. 37–48.
- ISSTA-2014-PradelHG #concurrent #performance #testing
- Performance regression testing of concurrent classes (MP, MH, TRG), pp. 13–25.
- ASE-2013-KukrejaHT #game studies #testing #using
- Randomizing regression tests using game theory (NK, WGJH, MT), pp. 616–621.
- ASE-2013-SagdeoEPV #automation #debugging #invariant #locality #testing #using
- Using automatically generated invariants for regression testing and bug localization (PS, NE, DP, SV), pp. 634–639.
- DAC-2013-LinLM #analysis #hybrid #kernel #reachability #verification
- Verification of digitally-intensive analog circuits via kernel ridge regression and hybrid reachability analysis (HL, PL, CJM), p. 6.
- DAC-2013-YinQ #security
- Improving PUF security with regression-based distiller (CEDY, GQ), p. 6.
- DATE-2013-QianJBTMM #analysis #named #performance #using
- SVR-NoC: a performance analysis tool for network-on-chips using learning-based support vector regression model (ZQ, DCJ, PB, CYT, DM, RM), pp. 354–357.
- CSMR-2013-GhaithWPM #analysis #detection #independence #performance #testing
- Profile-Based, Load-Independent Anomaly Detection and Analysis in Performance Regression Testing of Software Systems (SG, MW, PP, JM), pp. 379–383.
- ICSM-2013-MarijanGS #case study #industrial #testing
- Test Case Prioritization for Continuous Regression Testing: An Industrial Case Study (DM, AG, SS), pp. 540–543.
- ICSM-2013-SchwartzD #effectiveness #fuzzy #testing
- A Fuzzy Expert System for Cost-Effective Regression Testing Strategies (AS, HD), pp. 1–10.
- STOC-2013-ClarksonW #approximate #rank
- Low rank approximation and regression in input sparsity time (KLC, DPW), pp. 81–90.
- STOC-2013-MengM #linear #robust
- Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression (XM, MWM), pp. 91–100.
- HIMI-LCCB-2013-AntolosLLV #analysis #using
- Burglary Crime Analysis Using Logistic Regression (DA, DL, AL, DAV), pp. 549–558.
- ICML-c1-2013-ChenC13a
- Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery (YC, CC), pp. 383–391.
- ICML-c1-2013-GiguereLMS #algorithm #approach #bound #learning #predict
- Risk Bounds and Learning Algorithms for the Regression Approach to Structured Output Prediction (SG, FL, MM, KS), pp. 107–114.
- ICML-c3-2013-BalasubramanianYL #learning
- Smooth Sparse Coding via Marginal Regression for Learning Sparse Representations (KB, KY, GL), pp. 289–297.
- ICML-c3-2013-ChagantyL #linear
- Spectral Experts for Estimating Mixtures of Linear Regressions (ATC, PL), pp. 1040–1048.
- ICML-c3-2013-ChenCM #robust
- Robust Sparse Regression under Adversarial Corruption (YC, CC, SM), pp. 774–782.
- ICML-c3-2013-DuvenaudLGTG #composition #kernel #parametricity
- Structure Discovery in Nonparametric Regression through Compositional Kernel Search (DKD, JRL, RBG, JBT, ZG), pp. 1166–1174.
- ICML-c3-2013-GrosshansSBS #game studies #problem
- Bayesian Games for Adversarial Regression Problems (MG, CS, MB, TS), pp. 55–63.
- ICML-c3-2013-HockingRVB #detection #learning #using
- Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression (TH, GR, JPV, FRB), pp. 172–180.
- ICML-c3-2013-MengM #pipes and filters #robust
- Robust Regression on MapReduce (XM, MWM), pp. 888–896.
- ICML-c3-2013-OlivaPS
- Distribution to Distribution Regression (JBO, BP, JGS), pp. 1049–1057.
- ICML-c3-2013-ShenderL #trade-off
- Computation-Risk Tradeoffs for Covariance-Thresholded Regression (DS, JDL), pp. 756–764.
- ICML-c3-2013-YangMM #scalability
- Quantile Regression for Large-scale Applications (JY, XM, MWM), pp. 881–887.
- ICML-c3-2013-YangX #algorithm #robust
- A Unified Robust Regression Model for Lasso-like Algorithms (WY, HX), pp. 585–593.
- KDD-2013-CaiQ #analysis #linear #on the #rank
- On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions (XC, CHQD, FN, HH), pp. 1124–1132.
- KDD-2013-ChenCMG
- Density-based logistic regression (WC, YC, YM, BG), pp. 140–148.
- KDD-2013-LozanoJD #distance #estimation #matrix #multi #robust
- Robust sparse estimation of multiresponse regression and inverse covariance matrix via the L2 distance (ACL, HJ, XD), pp. 293–301.
- KDD-2013-RistanoskiLB
- A time-dependent enhanced support vector machine for time series regression (GR, WL, JB), pp. 946–954.
- KDD-2013-ZhengM #optimisation #parallel
- Optimizing parallel belief propagation in junction treesusing regression (LZ, OJM), pp. 757–765.
- KDIR-KMIS-2013-PapulaVH #analysis #enterprise #network #process
- Knowledge Networks as a Source of Knowledge Initiatives and Innovation Activity in Small and Medium Enterprises — Regression Analysis for EU 27 Countries (JP, JV, JH), pp. 389–396.
- MLDM-2013-AmalamanER #detection #using
- Using Turning Point Detection to Obtain Better Regression Trees (PKA, CFE, NJR), pp. 325–339.
- SAC-2013-GholipourHB #adaptation #data type
- An adaptive regression tree for non-stationary data streams (AG, MJH, HB), pp. 815–817.
- SAC-2013-SeelandKP #graph #kernel #learning
- Model selection based product kernel learning for regression on graphs (MS, SK, BP), pp. 136–143.
- ESEC-FSE-2013-BeyerLNSW #performance #precise #reuse #verification
- Precision reuse for efficient regression verification (DB, SL, EN, AS, PW), pp. 389–399.
- ESEC-FSE-2013-BohmeOR #fault #interactive #testing
- Regression tests to expose change interaction errors (MB, BCdSO, AR), pp. 334–344.
- ICSE-2013-BohmeOR #verification
- Partition-based regression verification (MB, BCdSO, AR), pp. 302–311.
- ICSE-2013-PastoreMG #c #c++ #debugging #named #problem
- RADAR: a tool for debugging regression problems in C/C++ software (FP, LM, AG), pp. 1335–1338.
- ICSE-2013-SukkerdBWZB #comprehension
- Understanding regression failures through test-passing and test-failing code changes (RS, IB, JW, SZ, YB), pp. 1177–1180.
- ICSE-2013-SwearnginCJB #performance #testing
- Human performance regression testing (AS, MBC, BEJ, RKEB), pp. 152–161.
- ASPLOS-2013-OliveiraFDHS #why
- Why you should care about quantile regression (ABdO, SF, AD, MH, PFS), pp. 207–218.
- ICST-2013-Bauersfeld #named #testing #user interface #visual notation
- GUIdiff — A Regression Testing Tool for Graphical User Interfaces (SB), pp. 499–500.
- ICST-2013-YuQAR #testing
- Oracle-based Regression Test Selection (TY, XQ, MA, GR), pp. 292–301.
- ISSTA-2013-Ghaith #analysis #performance #testing #transaction
- Analysis of performance regression testing data by transaction profiles (SG), pp. 370–373.
- ASE-2012-HwangXKMT #evolution #policy #security #testing
- Selection of regression system tests for security policy evolution (JH, TX, DEK, TM, YLT), pp. 266–269.
- ASE-2012-YuLCZ #debugging #fault
- Practical isolation of failure-inducing changes for debugging regression faults (KY, ML, JC, XZ), pp. 20–29.
- DATE-2012-MaricauJG #analysis #learning #multi #reliability #using
- Hierarchical analog circuit reliability analysis using multivariate nonlinear regression and active learning sample selection (EM, DdJ, GGEG), pp. 745–750.
- VLDB-2012-ZhangZXYW #analysis #difference #functional #privacy
- Functional Mechanism: Regression Analysis under Differential Privacy (JZ, ZZ, XX, YY, MW), pp. 1364–1375.
- ICSM-2012-BeszedesGSJLG #test coverage #testing
- Code coverage-based regression test selection and prioritization in WebKit (ÁB, TG, LS, JJ, LL, TG), pp. 46–55.
- ICSM-2012-QuAR #impact analysis #testing #using
- Configuration selection using code change impact analysis for regression testing (XQ, MA, BR), pp. 129–138.
- ICSM-2012-RachatasumritK #empirical #refactoring #testing
- An empirical investigation into the impact of refactoring on regression testing (NR, MK), pp. 357–366.
- CIKM-2012-XuZG #multi #online
- Multiview hierarchical bayesian regression model andapplication to online advertising (TX, RZ, ZG), pp. 485–494.
- ICML-2012-BoukouvalasBC #process #using
- Gaussian Process Quantile Regression using Expectation Propagation (AB, RB, DC), p. 123.
- ICML-2012-GuL #parametricity
- Sequential Nonparametric Regression (HG, JDL), p. 54.
- ICML-2012-HannahD #design #geometry #programming
- Ensemble Methods for Convex Regression with Applications to Geometric Programming Based Circuit Design (LH, DBD), p. 24.
- ICML-2012-HazanK12a #linear
- Linear Regression with Limited Observation (EH, TK), p. 242.
- ICML-2012-LozanoS #multi
- Multi-level Lasso for Sparse Multi-task Regression (ACL, GS), p. 80.
- ICML-2012-PurushothamL #collaboration #matrix #recommendation #social #topic
- Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems (SP, YL), p. 92.
- ICML-2012-WilsonKG #network #process
- Gaussian Process Regression Networks (AGW, DAK, ZG), p. 149.
- ICML-2012-XuL #multi
- Conditional Sparse Coding and Grouped Multivariate Regression (MX, JDL), p. 116.
- ICML-2012-ZhouLDC
- Lognormal and Gamma Mixed Negative Binomial Regression (MZ, LL, DBD, LC), p. 113.
- ICPR-2012-BrownLG #linear #recognition
- Locality-Regularized Linear Regression for face recognition (DB, HL, YG), pp. 1586–1589.
- ICPR-2012-DuH #adaptation #approach #linear
- A discriminative linear regression approach to OCR adaptation (JD, QH), pp. 629–632.
- ICPR-2012-El-GaalyT #kernel #multi #recognition #using
- RGBD object pose recognition using local-global multi-kernel regression (TEG, MT), pp. 2468–2471.
- ICPR-2012-FiaschiKNH #learning
- Learning to count with regression forest and structured labels (LF, UK, RN, FAH), pp. 2685–2688.
- ICPR-2012-Gao12a #clustering #estimation #multi #using
- Facial age estimation using Clustered Multi-task Support Vector Regression Machine (PXG), pp. 541–544.
- ICPR-2012-GuiST #analysis #estimation #parametricity
- Regularization parameter estimation for spectral regression discriminant analysis based on perturbation theory (JG, ZS, TT), pp. 401–404.
- ICPR-2012-GuQFLW #image #kernel #multi
- Image super-resolution based on multikernel regression (YG, YQ, TZF, CL, HW), pp. 2071–2074.
- ICPR-2012-GuSM #image #performance
- Fast image super resolution via local regression (SG, NS, FM), pp. 3128–3131.
- ICPR-2012-GuyonBZ #constraints #detection #matrix #rank #robust
- Foreground detection via robust low rank matrix factorization including spatial constraint with Iterative reweighted regression (CG, TB, EHZ), pp. 2805–2808.
- ICPR-2012-HinoWM #slicing
- Sliced inverse regression with conditional entropy minimization (HH, KW, NM), pp. 1185–1188.
- ICPR-2012-LiLLL #distance #estimation #learning #metric
- Learning distance metric regression for facial age estimation (CL, QL, JL, HL), pp. 2327–2330.
- ICPR-2012-LiuDHZL #linear
- A cost construction via MSW and linear regression for stereo matching (TL, XD, ZH, XZ, LL), pp. 914–917.
- ICPR-2012-TurkovKM #concept #pattern matching #pattern recognition #problem #recognition
- The Bayesian logistic regression in pattern recognition problems under concept drift (PAT, OK, VM), pp. 2976–2979.
- ICPR-2012-ZhangWDP #detection #linear
- Skin detection via linear regression tree (JZ, HW, FD, CP), pp. 1711–1714.
- ICPR-2012-ZhengZ #kernel #recognition #speech
- Speech emotion recognition based on kernel reduced-rank regression (WZ, XZ), pp. 1972–1976.
- KDD-2012-DuivesteijnFK #distance #mining #modelling
- Different slopes for different folks: mining for exceptional regression models with cook’s distance (WD, AF, AJK), pp. 868–876.
- KDD-2012-LouCG #classification #modelling
- Intelligible models for classification and regression (YL, RC, JG), pp. 150–158.
- KDIR-2012-DubeyBP #named
- BINGR: Binary Search based Gaussian Regression (HD, SB, VP), pp. 258–263.
- KEOD-2012-KhairMZ #data mining #education #mining #roadmap #student #using
- Creating an Educational Roadmap for Engineering Students via an Optimal and Iterative Yearly Regression Tree using Data Mining (MK, CEM, WZ), pp. 43–52.
- MLDM-2012-BharambeDP #named #performance
- BINER — BINary Search Based Efficient Regression (SB, HD, VP), pp. 76–85.
- MLDM-2012-Thombre #classification #network
- Comparing Logistic Regression, Neural Networks, C5.0 and M5′ Classification Techniques (AT), pp. 132–140.
- SEKE-2012-NetoBSACR #fuzzy #testing
- Regression Testing Prioritization Based on Fuzzy Inference Systems (PSN, RB, TS, WA, JC, RALR), pp. 273–278.
- SEKE-2012-SunLTZ #impact analysis #testing #using
- Using FCA-based Change Impact Analysis for Regression Testing (XS, BL, CT, QZ), pp. 452–457.
- ECMFA-2012-PuissantSM #consistency #design #named #nondeterminism
- Badger: A Regression Planner to Resolve Design Model Inconsistencies (JPP, RVDS, TM), pp. 146–161.
- SAC-2012-SeelandBKP
- Maximum Common Subgraph based locally weighted regression (MS, FB, SK, BP), pp. 165–172.
- FSE-2012-ZhangKK #evolution #fault #impact analysis #java #named #source code
- FaultTracer: a change impact and regression fault analysis tool for evolving Java programs (LZ, MK, SK), p. 40.
- ICSE-2012-Bohme #clustering
- Software regression as change of input partitioning (MB), pp. 1523–1526.
- ICSE-2012-MarinescuC #execution #symbolic computation #testing
- make test-zesti: A symbolic execution solution for improving regression testing (PDM, CC), pp. 716–726.
- PLEASE-2012-LityLSG #modelling #testing
- Delta-oriented model-based SPL regression testing (SL, ML, IS, UG), pp. 53–56.
- SPLC-2012-HeiderRGL #impact analysis #modelling #testing #using #variability
- Using regression testing to analyze the impact of changes to variability models on products (WH, RR, PG, DL), pp. 196–205.
- ICST-2012-ChenLYS #question #testing #user interface #what
- When a GUI Regression Test Failed, What Should be Blamed? (JC, ML, KY, BS), pp. 467–470.
- ICST-2012-GuoSC #analysis #clustering #testing
- Analysis of Test Clusters for Regression Testing (BG, MS, PC), p. 736.
- ICST-2012-KauffmanK #framework #industrial #research #testing
- A Framework to Support Research in and Encourage Industrial Adoption of Regression Testing Techniques (JMK, GMK), pp. 907–908.
- ICST-2012-MarbackDE #approach #effectiveness #php #testing #web
- An Effective Regression Testing Approach for PHP Web Applications (AM, HD, NE), pp. 221–230.
- ICST-2012-Nguyen #comprehension #detection #performance #scalability #using
- Using Control Charts for Detecting and Understanding Performance Regressions in Large Software (THDN), pp. 491–494.
- ICST-2012-RunesonE #3d #problem #product line #testing
- Software Product Line Testing — A 3D Regression Testing Problem (PR, EE), pp. 742–746.
- ICST-2012-YuL #debugging #fault #towards
- Towards Practical Debugging for Regression Faults (KY, ML), pp. 487–490.
- ICTSS-2012-TaylorHBD #behaviour #testing #using
- Using Behaviour Inference to Optimise Regression Test Sets (RT, MH, KB, JD), pp. 184–199.
- ISSTA-2012-KimCHKOSPMN #performance #testing
- Efficient regression testing of ontology-driven systems (MK, JC, MJH, TMK, AO, JHS, ARP, KM, SBN), pp. 320–330.
- ISSTA-2012-ZhangMZK #mutation testing #testing
- Regression mutation testing (LZ, DM, LZ, SK), pp. 331–341.
- VMCAI-2012-ChakiGS #concurrent #multi #source code #thread #verification
- Regression Verification for Multi-threaded Programs (SC, AG, OS), pp. 119–135.
- ASE-2011-RobinsonEPAL #automation #generative #scalability #source code #testing
- Scaling up automated test generation: Automatically generating maintainable regression unit tests for programs (BR, MDE, JHP, VA, NL), pp. 23–32.
- CASE-2011-PurwinsNBHKLPW #predict
- Regression methods for prediction of PECVD Silicon Nitride layer thickness (HP, AN, BB, UH, AK, BL, GP, KW), pp. 387–392.
- FASE-2011-KhanH #analysis #contract #dependence #modelling #on the #testing #using #visual notation
- On Model-Based Regression Testing of Web-Services Using Dependency Analysis of Visual Contracts (TAK, RH), pp. 341–355.
- CSMR-2011-JurgensHDFSW #testing
- Regression Test Selection of Manual System Tests in Practice (EJ, BH, FD, MF, CS, AW), pp. 309–312.
- CSMR-2011-SalehieLTDLM #testing
- Prioritizing Requirements-Based Regression Test Cases: A Goal-Driven Practice (MS, SL, LT, RD, SL, MM), pp. 329–332.
- ICSM-2011-HuangLZXW #approach #novel #testing
- A novel approach to regression test selection for J2EE applications (SH, ZJL, JZ, YX, WW), pp. 13–22.
- ICSM-2011-KuhnK #combinator #detection #fault #testing
- Practical combinatorial (t-way) methods for detecting complex faults in regression testing (RK, RK), p. 599.
- ICSM-2011-RogstadBDRA #automation #case study #database #experience #industrial #legacy #testing
- Industrial experiences with automated regression testing of a legacy database application (ER, LCB, RD, MR, EA), pp. 362–371.
- ICSM-2011-SrikanthC #as a service #case study #industrial #testing
- Regression testing in Software as a Service: An industrial case study (HS, MBC), pp. 372–381.
- HCI-DDA-2011-ChangZDWH #multi #sketching #synthesis
- Face Sketch Synthesis via Multivariate Output Regression (LC, MZ, XD, ZW, YH), pp. 555–561.
- CIKM-2011-YooYC #classification #email #modelling #personalisation
- Modeling personalized email prioritization: classification-based and regression-based approaches (SY, YY, JGC), pp. 729–738.
- ICML-2011-BrouarddS #kernel #predict
- Semi-supervised Penalized Output Kernel Regression for Link Prediction (CB, FdB, MS), pp. 593–600.
- ICML-2011-IkonomovskaGZD
- Speeding-Up Hoeffding-Based Regression Trees With Options (EI, JG, BZ, SD), pp. 537–544.
- ICML-2011-Lazaro-GredillaT #process
- Variational Heteroscedastic Gaussian Process Regression (MLG, MKT), pp. 841–848.
- ICML-2011-MachartPARG #kernel #learning #probability #rank
- Stochastic Low-Rank Kernel Learning for Regression (PM, TP, SA, LR, HG), pp. 969–976.
- ICML-2011-MeyerBS #approach #constraints #linear
- Linear Regression under Fixed-Rank Constraints: A Riemannian Approach (GM, SB, RS), pp. 545–552.
- KDD-2011-MalbasaV #scalability
- Spatially regularized logistic regression for disease mapping on large moving populations (VM, SV), pp. 1352–1360.
- KDD-2011-YuanHL
- An improved GLMNET for l1-regularized logistic regression (GXY, CHH, CJL), pp. 33–41.
- RecSys-2011-ZhangAC #flexibility #matrix
- Generalizing matrix factorization through flexible regression priors (LZ, DA, BCC), pp. 13–20.
- SEKE-2011-Amasaki #case study #consistency #estimation #linear #nondeterminism #performance
- A Study on Performance Inconsistency between Estimation by Analogy and Linear Regression (SA), pp. 485–488.
- SEKE-2011-TaoLG #approach #component #modelling #testing
- A Model-based Approach to Regression Testing of Component-based Software (CT, BL, JG), pp. 230–237.
- SEKE-2011-YuLFC #composition #testing
- A Regression Test Technique for Analyzing the Functionalities of Service Composition (HY, DL, GF, LC), pp. 578–582.
- SIGIR-2011-WuYLLYX #learning #rank #using
- Learning to rank using query-level regression (JW, ZY, YL, HL, ZY, KX), pp. 1091–1092.
- ICST-2011-ChenCZXF #clustering #testing #using
- Using semi-supervised clustering to improve regression test selection techniques (SC, ZC, ZZ, BX, YF), pp. 1–10.
- ICST-2011-EngstromRL #case study #industrial #performance #testing
- Improving Regression Testing Transparency and Efficiency with History-Based Prioritization — An Industrial Case Study (EE, PR, AL), pp. 367–376.
- ICST-2011-NandaMSHO #testing
- Regression testing in the presence of non-code changes (AN, SM, SS, MJH, AO), pp. 21–30.
- ISSTA-2011-TanejaXTH #generative #named #performance #testing
- eXpress: guided path exploration for efficient regression test generation (KT, TX, NT, JdH), pp. 1–11.
- DAC-2010-ZhangCTL #modelling #multi #performance #scalability #towards
- Toward efficient large-scale performance modeling of integrated circuits via multi-mode/multi-corner sparse regression (WZ, THC, MYT, XL), pp. 897–902.
- DATE-2010-GanapathyCGR #estimation #modelling #multi #variability
- Circuit propagation delay estimation through multivariate regression-based modeling under spatio-temporal variability (SG, RC, AG, AR), pp. 417–422.
- ICSM-2010-LiQJW #automation #generative #graph #testing
- Automatic test case selection and generation for regression testing of composite service based on extensible BPEL flow graph (BL, DQ, SJ, DW), pp. 1–10.
- CIKM-2010-YuKN #named #question
- RankSVR: can preference data help regression? (HY, SK, SHN), pp. 879–888.
- ICML-2010-KimSD #algorithm #scalability
- A scalable trust-region algorithm with application to mixed-norm regression (DK, SS, ISD), pp. 519–526.
- ICML-2010-KimX #multi
- Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity (SK, EPX), pp. 543–550.
- ICML-2010-PardoeS
- Boosting for Regression Transfer (DP, PS), pp. 863–870.
- ICML-2010-TuL #classification #multi
- One-sided Support Vector Regression for Multiclass Cost-sensitive Classification (HHT, HTL), pp. 1095–1102.
- ICML-2010-YanQ #process
- Sparse Gaussian Process Regression via L1 Penalization (FY, Y(Q), pp. 1183–1190.
- ICPR-2010-AsheriRPR #adaptation #fault #framework #kernel #process
- A Gaussian Process Regression Framework for Spatial Error Concealment with Adaptive Kernels (HA, HRR, NP, MHR), pp. 4541–4544.
- ICPR-2010-GaoHLZW #detection #kernel
- Local Outlier Detection Based on Kernel Regression (JG, WH, WL, Z(Z, OW), pp. 585–588.
- ICPR-2010-GonenA #kernel #locality #multi
- Localized Multiple Kernel Regression (MG, EA), pp. 1425–1428.
- ICPR-2010-HiraiUK #performance #realtime
- Real-Time Pose Regression with Fast Volume Descriptor Computation (MH, NU, MK), pp. 1852–1855.
- ICPR-2010-KusakunniranWZL #multi #recognition #using
- Multi-view Gait Recognition Based on Motion Regression Using Multilayer Perceptron (WK, QW, JZ, HL), pp. 2186–2189.
- ICPR-2010-NaseemTB #recognition #robust
- Robust Regression for Face Recognition (IN, RT, MB), pp. 1156–1159.
- ICPR-2010-RudovicPP #multi #recognition
- Regression-Based Multi-view Facial Expression Recognition (OR, IP, MP), pp. 4121–4124.
- KDD-2010-Sculley #ranking
- Combined regression and ranking (DS), pp. 979–988.
- KDD-2010-WangLZ #analysis #approach #bibliography #rating
- Latent aspect rating analysis on review text data: a rating regression approach (HW, YL, CZ), pp. 783–792.
- KDD-2010-YangO #feature model #predict #probability #using
- Feature selection for support vector regression using probabilistic prediction (JBY, CJO), pp. 343–352.
- KDIR-2010-DesaiSP #named #performance #robust #scalability
- SEAR — Scalable, Efficient, Accurate, Robust kNN-based Regression (AD, HS, VP), pp. 392–395.
- SEKE-2010-DuanCZQY #clustering #slicing #testing
- Improving Cluster Selection Techniques of Regression Testing by Slice Filtering (YD, ZC, ZZ, JQ, ZY), pp. 253–258.
- SEKE-2010-FagundesS #estimation #fault #using
- Software Defect Estimation using Support Vector Regression (RAdAF, RMCRdS), pp. 265–268.
- SIGIR-2010-ChenYLZQ #classification #personalisation #predict #query #question
- Predicting query potential for personalization, classification or regression? (CC, MY, SL, TZ, HQ), pp. 725–726.
- SAC-2010-AppiceCM #learning
- Transductive learning for spatial regression with co-training (AA, MC, DM), pp. 1065–1070.
- SAC-2010-BaccianellaES #feature model
- Feature selection for ordinal regression (SB, AE, FS), pp. 1748–1754.
- SAC-2010-MaranzatoPLN #detection #using
- Fraud detection in reputation systems in e-markets using logistic regression (RM, AMP, APdL, MN), pp. 1454–1455.
- FSE-2010-JinOX #behaviour #named #testing
- BERT: a tool for behavioral regression testing (WJ, AO, TX), pp. 361–362.
- ICST-2010-Engstrom #product line #testing
- Regression Test Selection and Product Line System Testing (EE), pp. 512–515.
- ICST-2010-EngstromRW #empirical #evaluation #recommendation #testing
- An Empirical Evaluation of Regression Testing Based on Fix-Cache Recommendations (EE, PR, GW), pp. 75–78.
- ICST-2010-JinOX #automation #behaviour #testing
- Automated Behavioral Regression Testing (WJ, AO, TX), pp. 137–146.
- ICST-2010-NagahawatteD #effectiveness #fault #testing
- The Effectiveness of Regression Testing Techniques in Reducing the Occurrence of Residual Defects (PN, HD), pp. 79–88.
- ICST-2010-NaslavskyZR #modelling #named #testing #traceability
- MbSRT2: Model-Based Selective Regression Testing with Traceability (LN, HZ, DJR), pp. 89–98.
- ICST-2010-RoestMD #ajax #testing
- Regression Testing Ajax Applications: Coping with Dynamism (DR, AM, AvD), pp. 127–136.
- TAP-2010-GladischTBY #generative #testing #using #verification
- Generating Regression Unit Tests Using a Combination of Verification and Capture & Replay (CG, SST, BB, AY), pp. 61–76.
- DAC-2009-GodlinS #verification
- Regression verification (BG, OS), pp. 466–471.
- DAC-2009-Li #equation #modelling #performance #scalability
- Finding deterministic solution from underdetermined equation: large-scale performance modeling by least angle regression (XL0), pp. 364–369.
- ICSM-2009-Harrold #reuse #testing
- Reduce, reuse, recycle, recover: Techniques for improved regression testing (MJH), p. 5.
- ICSM-2009-NaslavskyZR #modelling #testing
- A model-based regression test selection technique (LN, HZ, DJR), pp. 515–518.
- ICSM-2009-YangDR #model checking
- Regression model checking (GY, MBD, GR), pp. 115–124.
- CIKM-2009-FeiH #graph #kernel
- L2 norm regularized feature kernel regression for graph data (HF, JH), pp. 593–600.
- ECIR-2009-LeaseAC #learning #query #rank
- Regression Rank: Learning to Meet the Opportunity of Descriptive Queries (ML, JA, WBC), pp. 90–101.
- ICML-2009-MooijJPS #dependence #modelling
- Regression by dependence minimization and its application to causal inference in additive noise models (JMM, DJ, JP, BS), pp. 745–752.
- ICML-2009-ZhuAX #classification #modelling #named #topic
- MedLDA: maximum margin supervised topic models for regression and classification (JZ, AA, EPX), pp. 1257–1264.
- KDD-2009-AgarwalC #modelling
- Regression-based latent factor models (DA, BCC), pp. 19–28.
- KDD-2009-LiuCY #scalability
- Large-scale sparse logistic regression (JL, JC, JY), pp. 547–556.
- MLDM-2009-RosenthalVHHL
- Drift-Aware Ensemble Regression (FR, PBV, MH, DH, WL), pp. 221–235.
- RecSys-2009-ParkC #recommendation
- Pairwise preference regression for cold-start recommendation (STP, WC), pp. 21–28.
- SAC-2009-HuangCZLT #java #testing
- An optimized change-driven regression testing selection strategy for binary Java applications (SH, YC, JZ, ZJL, HT), pp. 558–565.
- CAV-2009-Strichman #equivalence #proving #source code #verification
- Regression Verification: Proving the Equivalence of Similar Programs (OS), p. 63.
- ICST-2009-WikstrandFGZW #testing
- Dynamic Regression Test Selection Based on a File Cache (GW, RF, JKG, WZ, CW), pp. 299–302.
- ASE-2008-TanejaX #automation #generative #named #testing
- DiffGen: Automated Regression Unit-Test Generation (KT, TX), pp. 407–410.
- DAC-2008-LiL #modelling #performance #statistics
- Statistical regression for efficient high-dimensional modeling of analog and mixed-signal performance variations (XL, HL), pp. 38–43.
- DATE-2008-Liu08a #correlation #performance #random #simulation
- Spatial Correlation Extraction via Random Field Simulation and Production Chip Performance Regression (BL), pp. 527–532.
- ICSM-2008-HouZXS #testing
- Quota-constrained test-case prioritization for regression testing of service-centric systems (SSH, LZ, TX, JS), pp. 257–266.
- ICSM-2008-KorelKT #modelling #testing
- Application of system models in regression test suite prioritization (BK, GK, LHT), pp. 247–256.
- STOC-2008-DasK #algorithm #linear #set
- Algorithms for subset selection in linear regression (AD, DK), pp. 45–54.
- ICML-2008-CaronD #parametricity
- Sparse Bayesian nonparametric regression (FC, AD), pp. 88–95.
- ICML-2008-CortesMPR #algorithm
- Stability of transductive regression algorithms (CC, MM, DP, AR), pp. 176–183.
- ICML-2008-Rosset #kernel
- Bi-level path following for cross validated solution of kernel quantile regression (SR), pp. 840–847.
- ICML-2008-WalderKS #multi #process
- Sparse multiscale gaussian process regression (CW, KIK, BS), pp. 1112–1119.
- ICPR-2008-DingB #adaptation #analysis
- Adaptive Laplacian eigenfunctions as bases for regression analysis (LD, XB), pp. 1–4.
- ICPR-2008-FuR #learning #multi #performance
- Fast multiple instance learning via L1, 2 logistic regression (ZF, ARK), pp. 1–4.
- ICPR-2008-GuoFDH #classification #estimation #question
- Head pose estimation: Classification or regression? (GG, YF, CRD, TSH), pp. 1–4.
- ICPR-2008-KashimaYIS
- Regression with interval output values (HK, KY, AI, HS), pp. 1–4.
- ICPR-2008-NguyenLV #2d #locality
- Ridge Regression for Two Dimensional Locality Preserving Projection (NTN, WL, SV), pp. 1–4.
- ICPR-2008-PorroHTNDB #evaluation #performance
- Performance evaluation of relevance vector machines as a nonlinear regression method in real-world chemical spectroscopic data (DP, NHG, ITB, ON, AD, RJB), pp. 1–4.
- ICPR-2008-SuAL #predict #realtime #robust
- Robust real-time face alignment based on ASM with boosting regression for displacement prediction (YS, HA, SL), pp. 1–4.
- ICPR-2008-TranTJ #anti #linear #network #probability
- An adjustable combination of linear regression and modified probabilistic neural network for anti-spam filtering (TPT, PT, TJ), pp. 1–4.
- ICPR-2008-WatanabeK #locality #multi
- Locality preserving multi-nominal logistic regression (KW, TK), pp. 1–4.
- KDD-2008-ChangYM
- Partitioned logistic regression for spam filtering (MWC, WtY, CM), pp. 97–105.
- KDD-2008-IfrimBW #categorisation #n-gram #performance
- Fast logistic regression for text categorization with variable-length n-grams (GI, GHB, GW), pp. 354–362.
- KDD-2008-JinAXR #effectiveness #performance #summary
- Effective and efficient itemset pattern summarization: regression-based approaches (RJ, MAA, YX, NR), pp. 399–407.
- KDD-2008-SaigoKT #graph #mining
- Partial least squares regression for graph mining (HS, NK, KT), pp. 578–586.
- KDD-2008-SongJRG #linear
- A bayesian mixture model with linear regression mixing proportions (XS, CJ, SR, JG), pp. 659–667.
- KDD-2008-YuFRKRDL #analysis #privacy
- Privacy-preserving cox regression for survival analysis (SY, GF, RR, SK, RBR, CDO, PL), pp. 1034–1042.
- SEKE-2008-HernandezKPC #metamodelling #testing #web
- A Meta-model to Support Regression Testing of Web Applications (YH, TMK, JP, PJC), pp. 500–505.
- SIGIR-2008-XuA #feedback
- A bayesian logistic regression model for active relevance feedback (ZX, RA), pp. 227–234.
- SAC-2008-AnagnostopoulosAH #adaptation #data type #multi #what
- Deciding what to observe next: adaptive variable selection for regression in multivariate data streams (CA, NMA, DJH), pp. 961–965.
- SAC-2008-BragaOM #estimation #feature model #optimisation #parametricity
- A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation (PLB, ALIO, SRLM), pp. 1788–1792.
- FSE-2008-DoMTR #constraints #empirical #testing
- An empirical study of the effect of time constraints on the cost-benefits of regression testing (HD, SM, LT, GR), pp. 71–82.
- ICST-2008-HarmanA #automation #program repair #testing #web
- Automated Session Data Repair for Web Application Regression Testing (MH, NA), pp. 298–307.
- ISSTA-2008-DoR #analysis #modelling #testing #using
- Using sensitivity analysis to create simplified economic models for regression testing (HD, GR), pp. 51–62.
- ISSTA-2008-QuCR #empirical #testing
- Configuration-aware regression testing: an empirical study of sampling and prioritization (XQ, MBC, GR), pp. 75–86.
- ASE-2007-NaslavskyR #modelling #testing #traceability #using
- Using traceability to support model-based regression testing (LN, DJR), pp. 567–570.
- ASE-2007-ZhengWR #automation #named #testing
- Pallino: automation to support regression test selection for cots-based applications (JZ, LW, BR), pp. 224–233.
- DAC-2007-HallschmidS #automation #energy #modelling #using
- Automatic Cache Tuning for Energy-Efficiency using Local Regression Modeling (PH, RS), pp. 732–737.
- DAC-2007-SingheeR #performance #statistics
- Beyond Low-Order Statistical Response Surfaces: Latent Variable Regression for Efficient, Highly Nonlinear Fitting (AS, RAR), pp. 256–261.
- ICSM-2007-CapiluppiF #anti #open source #predict
- A model to predict anti-regressive effort in Open Source Software (AC, JFR), pp. 194–203.
- ICSM-2007-ChittimalliH #testing
- Re-computing Coverage Information to Assist Regression Testing (PKC, MJH), pp. 164–173.
- ICSM-2007-GallagherHB #testing
- Reducing Regression Test Size by Exclusion (KG, TH, SB), pp. 154–163.
- ICSM-2007-HouZXMS #component #interface #testing
- Applying Interface-Contract Mutation in Regression Testing of Component-Based Software (SSH, LZ, TX, HM, JS), pp. 174–183.
- ICSM-2007-QuCW #case study #combinator #generative #interactive #testing
- Combinatorial Interaction Regression Testing: A Study of Test Case Generation and Prioritization (XQ, MBC, KMW), pp. 255–264.
- CIKM-2007-CaiHZH #locality
- Regularized locality preserving indexing via spectral regression (DC, XH, WVZ, JH), pp. 741–750.
- ECIR-2007-PaltoglouSS #algorithm #modelling #multi #using
- Results Merging Algorithm Using Multiple Regression Models (GP, MS, MS), pp. 173–184.
- ICML-2007-BabariaNKSBM #crawling #scalability
- Focused crawling with scalable ordinal regression solvers (RB, JSN, SK, KRS, CB, MNM), pp. 57–64.
- ICML-2007-KerstingPPB #process
- Most likely heteroscedastic Gaussian process regression (KK, CP, PP, WB), pp. 393–400.
- ICML-2007-LinWK #scalability #trust
- Trust region Newton methods for large-scale logistic regression (CJL, RCW, SSK), pp. 561–568.
- ICML-2007-NilssonSJ #kernel #reduction #using
- Regression on manifolds using kernel dimension reduction (JN, FS, MIJ), pp. 697–704.
- ICML-2007-PetersS #learning
- Reinforcement learning by reward-weighted regression for operational space control (JP, SS), pp. 745–750.
- ICML-2007-WangYHLT
- Transductive regression piloted by inter-manifold relations (HW, SY, TSH, JL, XT), pp. 967–974.
- KDD-2007-VogelAS #linear #scalability
- Scalable look-ahead linear regression trees (DSV, OA, TS), pp. 757–764.
- SIGIR-2007-XuWL
- Estimating collection size with logistic regression (JX, SW, XL), pp. 789–790.
- SIGIR-2007-ZhengCSZ #framework #learning #ranking #using
- A regression framework for learning ranking functions using relative relevance judgments (ZZ, KC, GS, HZ), pp. 287–294.
- SAC-2007-MaoLZ #component #design #testing
- Regression testing for component-based software via built-in test design (CM, YL, JZ), pp. 1416–1421.
- ICSE-2007-MarianiPP #component #testing
- Compatibility and Regression Testing of COTS-Component-Based Software (LM, SP, MP), pp. 85–95.
- ICSE-2007-XuR #aspectj #testing
- Regression Test Selection for AspectJ Software (G(X, AR), pp. 65–74.
- HPCA-2007-LeeB #architecture #design #modelling
- Illustrative Design Space Studies with Microarchitectural Regression Models (BCL, DMB), pp. 340–351.
- AMOST-2007-ChenPU #analysis #dependence #generative #modelling #testing #using
- Model-based regression test suite generation using dependence analysis (YC, RLP, HU), pp. 54–62.
- AMOST-2007-FarooqIMN #approach #state machine #testing
- An approach for selective state machine based regression testing (QuaF, MZZI, ZIM, AN), pp. 44–52.
- MBT-2007-FraserAW #model checking #testing
- Handling Model Changes: Regression Testing and Test-Suite Update with Model-Checkers (GF, BKA, FW), pp. 33–46.
- CASE-2006-ShaoHM #algorithm #analysis #component #linear #multi #using
- Quantitative Analysis Using NIR by Building Principal Component- Multiple Linear Regression-BP Algorithm (YS, YH, JM), pp. 161–164.
- ICSM-2006-PilskalnsUA #design #testing #uml
- Regression Testing UML Designs (OP, GU, AAA), pp. 254–264.
- ICSM-2006-Sneed #migration #testing
- Selective Regression Testing of a Host to DotNet Migration (HMS), pp. 104–112.
- ICML-2006-BrefeldGSW #performance
- Efficient co-regularised least squares regression (UB, TG, TS, SW), pp. 137–144.
- ICML-2006-Garcke
- Regression with the optimised combination technique (JG), pp. 321–328.
- ICML-2006-TingDS
- Bayesian regression with input noise for high dimensional data (JAT, AD, SS), pp. 937–944.
- ICML-2006-WangYL #2d
- Two-dimensional solution path for support vector regression (GW, DYY, FHL), pp. 993–1000.
- ICML-2006-YuYTK #collaboration
- Collaborative ordinal regression (SY, KY, VT, HPK), pp. 1089–1096.
- ICPR-v1-2006-ZhuJB #estimation
- Nonlinear Eye Gaze Mapping Function Estimation via Support Vector Regression (ZZ, QJ, KPB), pp. 1132–1135.
- ICPR-v2-2006-DornaikaD #modelling #recognition #using
- Facial Expression Recognition using Auto-regressive Models (FD, FD), pp. 520–523.
- ICPR-v3-2006-GinnekenM #image #nearest neighbour
- Image Denoising with k-nearest Neighbor and Support Vector Regression (BvG, AM), pp. 603–606.
- ICPR-v3-2006-MaKKLK #estimation
- Sparse Bayesian Regression for Head Pose Estimation (YM, YK, KK, SL, MK), pp. 507–510.
- ICPR-v3-2006-WuT06a #image #re-engineering
- A Regression Model in TensorPCA Subspace for Face Image Super-resolution Reconstruction (JW, MMT), pp. 627–630.
- ICPR-v3-2006-YangZ #nearest neighbour #recognition
- Regression Nearest Neighbor in Face Recognition (SY, CZ), pp. 515–518.
- KDD-2006-FanMY #framework #performance #random #summary
- A general framework for accurate and fast regression by data summarization in random decision trees (WF, JM, PSY), pp. 136–146.
- KDD-2006-Jaroszewicz #polynomial
- Polynomial association rules with applications to logistic regression (SJ), pp. 586–591.
- KDD-2006-MeruguRP #approach #estimation #multi
- A new multi-view regression approach with an application to customer wallet estimation (SM, SR, CP), pp. 656–661.
- ECOOP-2006-Xie #automation #testing
- Augmenting Automatically Generated Unit-Test Suites with Regression Oracle Checking (TX), pp. 380–403.
- OOPSLA-2006-CavazosO #compilation #using
- Method-specific dynamic compilation using logistic regression (JC, MFPO), pp. 229–240.
- FSE-2006-DoR #empirical #modelling #testing
- An empirical study of regression testing techniques incorporating context and lifetime factors and improved cost-benefit models (HD, GR), pp. 141–151.
- FSE-2006-GirouxR #detection #testing #using
- Detecting increases in feature coupling using regression tests (OG, MPR), pp. 163–174.
- ICSE-2006-ZhengRWS #testing
- Applying regression test selection for COTS-based applications (JZ, BR, LW, KS), pp. 512–522.
- ASPLOS-2006-LeeB #architecture #modelling #performance #predict
- Accurate and efficient regression modeling for microarchitectural performance and power prediction (BCL, DMB), pp. 185–194.
- HPCA-2006-JosephVT #analysis #linear #modelling #performance
- Construction and use of linear regression models for processor performance analysis (PJJ, KV, MJT), pp. 99–108.
- ASE-2005-Zheng #source code #testing
- In regression testing selection when source code is not available (JZ0), pp. 452–455.
- ICSM-2005-HayesZ #analysis #evolution #maintenance #metric #predict
- Maintainability Prediction: A Regression Analysis of Measures of Evolving Systems (JHH, LZ), pp. 601–604.
- ICSM-2005-WhiteJR #object-oriented #testing
- Utilization of Extended Firewall for Object-Oriented Regression Testing (LJW, KJ, BR), pp. 695–698.
- ICSM-2005-WillmorE #testing
- A Safe Regression Test Selection Technique for Database-Driven Applications (DW, SME), pp. 421–430.
- ICML-2005-ChuK
- New approaches to support vector ordinal regression (WC, SSK), pp. 145–152.
- ICML-2005-CortesMW #learning
- A general regression technique for learning transductions (CC, MM, JW), pp. 153–160.
- ICML-2005-DriessensD #first-order #learning #modelling
- Combining model-based and instance-based learning for first order regression (KD, SD), pp. 193–200.
- ICML-2005-LeSC #process
- Heteroscedastic Gaussian process regression (QVL, AJS, SC), pp. 489–496.
- ICML-2005-LiaoXC #data flow
- Logistic regression with an auxiliary data source (XL, YX, LC), pp. 505–512.
- ICML-2005-TsangKL #problem #scalability
- Core Vector Regression for very large regression problems (IWT, JTK, KTL), pp. 912–919.
- ICML-2005-WilliamsLXC #classification #using
- Incomplete-data classification using logistic regression (DW, XL, YX, LC), pp. 972–979.
- KDD-2005-Torgo #fault
- Regression error characteristic surfaces (LT), pp. 697–702.
- SAC-2005-RummelKT #data flow #testing #towards
- Towards the prioritization of regression test suites with data flow information (MJR, GMK, AT), pp. 1499–1504.
- ASE-2004-PerssonY #automation #case study #experience #industrial #testing
- Establishment of Automated Regression Testing at ABB: Industrial Experience Report on “Avoiding the Pitfalls” (CP, NY), pp. 112–121.
- DAC-2004-FineUZ #functional #probability #verification
- Probabilistic regression suites for functional verification (SF, SU, AZ), pp. 49–54.
- DATE-v1-2004-Wang #learning #simulation #validation
- Regression Simulation: Applying Path-Based Learning In Delay Test and Post-Silicon Validation (LCW), pp. 692–695.
- CSMR-2004-Sneed #reverse engineering #testing
- Reverse Engineering of Test Cases for Selective Regression Testing (HMS), pp. 69–74.
- ICSM-2004-MemonX #detection #effectiveness #empirical #evaluation #testing
- Empirical Evaluation of the Fault-Detection Effectiveness of Smoke Regression Test Cases for GUI-Based Software (AMM, QX), pp. 8–17.
- ICSM-2004-SkoglundR #case study #evolution #maintenance #testing
- A Case Study on Regression Test Suite Maintenance in System Evolution (MS, PR), pp. 438–442.
- ICSM-2004-WhiteR #analysis #industrial #realtime #testing #using
- Industrial Real-Time Regression Testing and Analysis Using Firewalls (LJW, BR), pp. 18–27.
- ICSM-2004-XieN #black box #difference #testing
- Checking Inside the Black Box: Regression Testing Based on Value Spectra Differences (TX, DN), pp. 28–37.
- ICEIS-v3-2004-MukkamalaSAR #adaptation #detection #using
- Intrusion Detection Systems Using Adaptive Regression Splines (SM, AHS, AA, VR), pp. 26–33.
- ICML-2004-ZhangKY #algorithm
- Surrogate maximization/minimization algorithms for AdaBoost and the logistic regression model (ZZ, JTK, DYY).
- ICML-2004-ZhangY #estimation #probability
- Probabilistic score estimation with piecewise logistic regression (JZ, YY).
- ICPR-v1-2004-MiasnikovH #analysis #rank
- Regression Analysis and Automorphic Orbits in Free Groups of Rank 2 (ADM, RMH), pp. 180–183.
- ICPR-v2-2004-CawleyT #kernel #performance
- Efficient Model Selection for Kernel Logistic Regression (GCC, NLCT), pp. 439–442.
- ICPR-v3-2004-AdeodatoVASCM #case study #comparative #network #scalability #set
- Neural Networks vs Logistic Regression: a Comparative Study on a Large Data Set (PJLA, GCV, ALA, RAFS, RCLVC, DSMPM), pp. 355–358.
- ICPR-v3-2004-GinnekenL #image #segmentation
- Pixel Position Regression — Application to Medical Image Segmentation (BvG, ML), pp. 718–721.
- ICPR-v4-2004-DebiollesOA #network
- Combined Use of Partial Least Squares Regression and Neural Network for Diagnosis Tasks (AD, LO, PA), pp. 573–576.
- KDD-2004-AndersonMCN #performance
- Fast nonlinear regression via eigenimages applied to galactic morphology (BA, AWM, AJC, RN), pp. 40–48.
- KDD-2004-LazarevicKK #detection #effectiveness #locality #scalability
- Effective localized regression for damage detection in large complex mechanical structures (AL, RK, CK), pp. 450–459.
- KDD-2004-SanilKLR #distributed #modelling #privacy
- Privacy preserving regression modelling via distributed computation (APS, AFK, XL, JPR), pp. 677–682.
- SEKE-2004-CanforaCT #estimation #experience #fuzzy #linear
- An Experience of Fuzzy Linear Regression applied to Effort Estimation (GC, LC, LT), pp. 57–61.
- FSE-2004-OrsoSH #scalability #testing
- Scaling regression testing to large software systems (AO, NS, MJH), pp. 241–251.
- ICDAR-2003-ZhangT #documentation #image
- Correcting Document Image Warping Based on Regression of Curved Text Lines (ZZ, CLT), pp. 589–593.
- VLDB-2003-TengCY #data type #mining
- A Regression-Based Temporal Pattern Mining Scheme for Data Streams (WGT, MSC, PSY), pp. 93–104.
- ICSM-2003-KojuTD #testing #virtual machine
- Regression Test Selection based on Intermediate Code for Virtual Machines (TK, ST, ND), p. 420–?.
- ICSM-2003-MemonBHN #framework #named #testing #user interface
- DART: A Framework for Regression Testing “Nightly/daily Builds” of GUI Applications (AMM, IB, NH, AN), pp. 410–419.
- ICSM-2003-WhiteAS #interactive #sequence #testing #user interface
- Firewall Regression Testing of GUI Sequences and their Interactions (LJW, HA, SS), pp. 398–409.
- CIKM-2003-YangK #adaptation
- Margin-based local regression for adaptive filtering (YY, BK), pp. 191–198.
- ICML-2003-BiB #fault
- Regression Error Characteristic Curves (JB, KPB), pp. 43–50.
- ICML-2003-DriessensR #learning #relational
- Relational Instance Based Regression for Relational Reinforcement Learning (KD, JR), pp. 123–130.
- ICML-2003-LeeL #learning #using
- Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression (WSL, BL), pp. 448–455.
- ICML-2003-ZhangJYH #approximate #categorisation #scalability
- Modified Logistic Regression: An Approximation to SVM and Its Applications in Large-Scale Text Categorization (JZ, RJ, YY, AGH), pp. 888–895.
- KDD-2003-YuC #distributed #multi
- Distributed multivariate regression based on influential observations (HY, ECC), pp. 679–684.
- MLDM-2003-CeciAM
- Simplification Methods for Model Trees with Regression and Splitting Nodes (MC, AA, DM), pp. 20–34.
- ESEC-FSE-2003-MemonS #testing #user interface
- Regression testing of GUIs (AMM, MLS), pp. 118–127.
- ESEC-FSE-2003-OrsoAH #impact analysis #testing
- Leveraging field data for impact analysis and regression testing (AO, TA, MJH), pp. 128–137.
- TestCom-2003-MittalA #framework #testing
- An Open Framework for Managed Regression Testing (NM, IA), pp. 265–278.
- VLDB-2002-ChenHWW #analysis #data type #multi
- Multi-Dimensional Regression Analysis of Time-Series Data Streams (YC, GD, JH, BWW, JW), pp. 323–334.
- ICSM-2002-BriandLS #automation #design #impact analysis #testing #uml
- Automating Impact Analysis and Regression Test Selection Based on UML Designs (LCB, YL, GS), pp. 252–261.
- ICSM-2002-KorelTV #analysis #dependence #modelling #reduction #testing #using
- Model Based Regression Test Reduction Using Dependence Analysis (BK, LHT, BV), pp. 214–223.
- ICSM-2002-MalishevskyRE #modelling #testing #trade-off
- Modeling the Cost-Benefits Tradeoffs for Regression Testing Techniques (AGM, GR, SGE), pp. 204–213.
- ICML-2002-BringmannKNPW
- Transformation-Based Regression (BB, SK, FN, HP, GW), pp. 59–66.
- ICML-2002-KeerthiDSP #algorithm #kernel #performance
- A Fast Dual Algorithm for Kernel Logistic Regression (SSK, KD, SKS, ANP), pp. 299–306.
- ICML-2002-ThamDR #classification #learning #markov #monte carlo #using
- Sparse Bayesian Learning for Regression and Classification using Markov Chain Monte Carlo (SST, AD, KR), pp. 634–641.
- KDD-2002-DobraG #algorithm #linear #named #scalability
- SECRET: a scalable linear regression tree algorithm (AD, JG), pp. 481–487.
- SIGIR-2002-Larson #approach #distributed #information retrieval
- A logistic regression approach to distributed IR (RRL), pp. 399–400.
- SIGIR-2002-SiC #using
- Using sampled data and regression to merge search engine results (LS, JPC), pp. 19–26.
- SAC-2002-DolinBR #co-evolution #distributed #effectiveness
- Co-evolving an effective fitness sample: experiments in symbolic regression and distributed robot control (BD, FHBI, EGR), pp. 553–559.
- ICSE-2002-KimP #testing
- A history-based test prioritization technique for regression testing in resource constrained environments (JMK, AAP), pp. 119–129.
- ICSE-2002-RothermelEMKD #effectiveness #testing
- The impact of test suite granularity on the cost-effectiveness of regression testing (GR, SGE, AGM, PK, BD), pp. 130–140.
- CBSE-2001-Weide #component #composition #testing
- Modular Regression Testing: Connections to Component-Based Software (BWW), p. 11.
- ICDAR-2001-WengH #classification #image #incremental #online
- Incremental Hierarchical Discriminant Regression for Online Image Classification (JW, WSH), pp. 476–480.
- ICSM-2001-OrsoHRRSD #component #testing #using
- Using Component Metacontent to Support the Regression Testing of Component-Based Software (AO, MJH, DSR, GR, MLS, HD), pp. 716–725.
- ICML-2001-ChuKO #framework
- A Unified Loss Function in Bayesian Framework for Support Vector Regression (WC, SSK, CJO), pp. 51–58.
- ICML-2001-NairCK #algorithm
- Some Greedy Algorithms for Sparse Nonlinear Regression (PBN, AC, AJK), pp. 369–376.
- ICML-2001-NouretdinovMV
- Ridge Regression Confidence Machine (IN, TM, VV), pp. 385–392.
- ICML-2001-RayP #multi
- Multiple Instance Regression (SR, DP), pp. 425–432.
- ICML-2001-Zhang #approximate #bound #problem
- Some Sparse Approximation Bounds for Regression Problems (TZ0), pp. 624–631.
- KDD-2001-BujaL #classification #data mining #mining
- Data mining criteria for tree-based regression and classification (AB, YSL), pp. 27–36.
- KDD-2001-IndurkhyaW #classification #problem #rule-based
- Solving regression problems with rule-based ensemble classifiers (NI, SMW), pp. 287–292.
- MLDM-2001-IndurkhyaW #rule-based
- Rule-Based Ensemble Solutions for Regression (NI, SMW), pp. 62–72.
- SEKE-2001-JorgensenIS #estimation #towards
- Software effort estimation by analogy and regression toward the mean (MJ, UI, DIKS), pp. 268–274.
- OOPSLA-2001-HarroldJLLOPSSG #java #testing
- Regression Test Selection for Java Software (MJH, JAJ, TL, DL, AO, MP, SS, SAS, AG), pp. 312–326.
- SAC-2001-HaratyMD #database #testing
- Regression testing of database applications (RAH, NM, BD), pp. 285–289.
- ICML-2000-SridharanT #automation #multi
- Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions (MS, GT), pp. 927–934.
- ICML-2000-VijayakumarS #incremental #learning #realtime
- Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space (SV, SS), pp. 1079–1086.
- ICPR-v2-2000-MenardDC #ambiguity #analysis #distance #modelling #using
- Switching Regression Models Using Ambiguity and Distance Rejects: Application to Ionogram Analysis (MM, PAD, VC), pp. 2688–2691.
- ICPR-v3-2000-LuceySC #linear #performance #using
- Initialized Eigenlip Estimator for Fast Lip Tracking Using Linear Regression (SL, SS, VC), pp. 3182–3185.
- ICSE-2000-KimPR #empirical #testing
- An empirical study of regression test application frequency (JMK, AAP, GR), pp. 126–135.
- ISSTA-2000-ElbaumMR #testing
- Prioritizing test cases for regression testing (SGE, AGM, GR), pp. 102–112.
- CSMR-1999-GranjaJ #testing
- Techniques for Regression Testing: Selecting Test Case Sets Tailored to Possibly Modified Functionalities (IG, MJ), pp. 2–13.
- KDD-1999-GaffneyS #clustering #modelling
- Trajectory Clustering with Mixtures of Regression Models (SG, PS), pp. 63–72.
- KDD-T-1999-GehrkeLR #classification
- Classification and Regression: Money *can* Grow on Trees (JG, WYL, RR), pp. 1–73.
- ICSM-1998-VokolosF #difference #empirical #evaluation #testing
- Empirical Evaluation of the Textual Differencing Regression Testing Technique (FIV, PGF), pp. 44–53.
- CIKM-1998-Chen #comparison #information retrieval #pattern matching #pattern recognition #recognition
- A Comparison of Regression, Neural Net, and Pattern Recognition Approaches to IR (AC), pp. 140–147.
- ICML-1998-SaundersGV #algorithm #learning
- Ridge Regression Learning Algorithm in Dual Variables (CS, AG, VV), pp. 515–521.
- ICPR-1998-Kwok #classification #problem
- Support vector mixture for classification and regression problems (JTYK), pp. 255–258.
- ICSE-1998-GravesHKPR #empirical #testing
- An Empirical Study of Regression Test Selection Techniques (TLG, MJH, JMK, AAP, GR), pp. 188–197.
- ISSTA-1998-Ball #analysis #control flow #on the #testing
- On the Limit of Control Flow Analysis for Regression Test Selection (TB), pp. 134–142.
- ISSTA-1998-KorelA #automation #generative #testing
- Automated Regression Test Generation (BK, AMAY), pp. 143–152.
- VLDB-1997-MorimotoIM #performance
- Efficient Construction of Regression Trees with Range and Region Splitting (YM, HI, SM), pp. 166–175.
- ICML-1997-MooreSD #performance #polynomial #predict
- Efficient Locally Weighted Polynomial Regression Predictions (AWM, JGS, KD), pp. 236–244.
- ICML-1997-Robnik-SikonjaK #adaptation #estimation
- An adaptation of Relief for attribute estimation in regression (MRS, IK), pp. 296–304.
- ICML-1997-Torgo #functional #modelling
- Functional Models for Regression Tree Leaves (LT), pp. 385–393.
- KDD-1997-Drucker #classification #performance
- Fast Committee Machines for Regression and Classification (HD), pp. 159–162.
- ICSM-1996-White #interactive #testing #user interface
- Regression Testing of GUI Event Interactions (LJW), pp. 350–358.
- FSE-1996-RosenblumW #effectiveness #predict #testing
- Predicting the Cost-Effectiveness of Regression Testing Strategies (DSR, EJW), pp. 118–126.
- ICSM-1995-AbdullahKW #integration #testing
- Correcting for unreliable regression integration testing (KA, JEKJ, LJW), pp. 232–241.
- ICSM-1995-Binkley #cost analysis #semantics #testing
- Reducing the cost of regression testing by semantics guided test case selection (DB), p. 251–?.
- SAC-1995-CrawfordVW #algorithm #detection #multi #search-based #using
- Detecting multiple outliers in regression data using genetic algorithms (KDC, DJV, RLW), pp. 351–356.
- ICSM-1994-MayrhauserMW #testing
- Domain Based Regression Testing (AvM, RTM, JW), pp. 26–35.
- ICSM-1994-RothermelH #object-oriented #testing
- Selecting Regression Tests for Object-Oriented Software (GR, MJH), pp. 14–25.
- SIGIR-1994-Gey #probability #using
- Inferring Probability of Relevance Using the Method of Logistic Regression (FCG), pp. 222–231.
- ICSE-1994-ChenRV #named #testing
- TestTube: A System for Selective Regression Testing (YFC, DSR, KPV), pp. 211–220.
- ICSE-1994-RothermelH #framework #testing
- A Framework for Evaluating Regression Test Selection Techniques (GR, MJH), pp. 201–210.
- CSM-1993-AgrawalHKL #incremental #testing
- Incremental Regression Testing (HA, JRH, EWK, SL), pp. 348–357.
- CSM-1993-RothermelH #algorithm #performance #testing
- A Safe, Efficient Algorithm for Regression Test Selection (GR, MJH), pp. 358–367.
- CSM-1993-WhiteNFKPO #testing
- Test Manager: A Regression Testing Tool (LJW, VN, TF, MK, PP, MO), pp. 338–347.
- TRI-Ada-1993-MayrhauserJ #architecture #automation #knowledge-based #testing
- CASE Tool Architecture for Knowledge-Based Regression Testing (AvM, TJ), pp. 368–378.
- ESEC-1993-LiuRE #database #testing
- A Regression Testing Database Model (LL, DJR, RE), pp. 163–174.
- ICSE-1993-LaskiSL #analysis #mutation testing #testing
- Dynamic Mutation Testing in Integrated Regression Analysis (JWL, WS, PL), pp. 108–117.
- ML-1992-Moulet #algorithm
- A Symbolic Algorithm for Computing Coefficients’ Accuracy in Regression (MM), pp. 332–337.
- SIGIR-1992-CooperGD #probability #retrieval #staged
- Probabilistic Retrieval Based on Staged Logistic Regression (WSC, FCG, DPD), pp. 198–210.
- ESEC-1989-LewisBH #named #testing
- Assay — A Tool to Support Regression Testing (RL, DWB, JH), pp. 487–496.
- ICSE-1985-MillerS
- Completely Monotone Regression Estimates of Software Failure Rates (DRM, AS), pp. 343–349.
- SIGMOD-1984-Fedorowicz #database #evaluation #multi #using
- Database Evaluation Using Multiple Regression Techniques (JF), pp. 70–76.
- STOC-1972-WarkentinF
- Predecessor Machines and Regressing Functions (JCW, PCF), pp. 81–87.