1152 papers:
- HT-2015-HaKK #on the #recommendation
- On Recommending Newly Published Academic Papers (JH, SHK, SWK), pp. 329–330.
- HT-2015-LeeHKGH #on the #recommendation
- On Recommending Job Openings (YCL, JH, SWK, SG, JYH), pp. 331–332.
- HT-2015-Orellana-Rodriguez #mining #recommendation
- Mining Affective Context in Short Films for Emotion-Aware Recommendation (COR, EDA, WN), pp. 185–194.
- HT-2015-PeraN #recommendation
- Analyzing Book-Related Features to Recommend Books for Emergent Readers (MSP, YKN), pp. 221–230.
- SIGMOD-2015-HuangCZJX #named #realtime #recommendation
- TencentRec: Real-time Stream Recommendation in Practice (YH, BC, WZ, JJ, YX), pp. 227–238.
- SIGMOD-2015-RoyLL #recommendation
- From Group Recommendations to Group Formation (SBR, LVSL, RL), pp. 1603–1616.
- SIGMOD-2015-ZhouCZCHW #community #online #recommendation #video
- Online Video Recommendation in Sharing Community (XZ, LC, YZ, LC, GH, CW), pp. 1645–1656.
- VLDB-2015-ChenGXJC #distributed #image #named #recommendation #retrieval
- I2RS: A Distributed Geo-Textual Image Retrieval and Recommendation System (LC, YG, ZX, CSJ, GC), pp. 1884–1895.
- VLDB-2015-GuerraouiKPT #difference #named #privacy #recommendation
- D2P: Distance-Based Differential Privacy in Recommenders (RG, AMK, RP, MT), pp. 862–873.
- VLDB-2015-VartakRMPP #data-driven #named #performance #recommendation #visual notation #visualisation
- SEEDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics (MV, SR, SM, AGP, NP), pp. 2182–2193.
- ICPC-2015-AmintabarHG #development #exception #ide #named #recommendation
- ExceptionTracer: a solution recommender for exceptions in an integrated development environment (VA, AH, MG), pp. 299–302.
- ICSME-2015-AsaduzzamanRMS #api #parametricity #recommendation
- Exploring API method parameter recommendations (MA, CKR, SM, KAS), pp. 271–280.
- ICSME-2015-AsaduzzamanRS #api #named #parametricity #recommendation
- PARC: Recommending API methods parameters (MA, CKR, KAS), pp. 330–332.
- ICSME-2015-XiaLWY #analysis #bibliography #recommendation
- Who should review this change?: Putting text and file location analyses together for more accurate recommendations (XX, DL, XW, XY), pp. 261–270.
- MSR-2015-WangMG #api #developer #recommendation
- Recommending Posts concerning API Issues in Developer Q&A Sites (WW, HM, MWG), pp. 224–234.
- SANER-2015-ThongtanunamTKY #approach #bibliography #code review #perspective #recommendation
- Who should review my code? A file location-based code-reviewer recommendation approach for Modern Code Review (PT, CT, RGK, NY, HI, KiM), pp. 141–150.
- SCAM-2015-RahmanRK #crowdsourcing #recommendation #source code #using
- Recommending insightful comments for source code using crowdsourced knowledge (MMR, CKR, IK), pp. 81–90.
- CHI-2015-LoeppH0 #algorithm #information management #interactive #recommendation
- Blended Recommending: Integrating Interactive Information Filtering and Algorithmic Recommender Techniques (BL, KH, JZ), pp. 975–984.
- CSCW-2015-ChangHT #recommendation #using
- Using Groups of Items to Bootstrap New Users in Recommender Systems (SC, FMH, LGT), pp. 1258–1269.
- DUXU-IXD-2015-WalterKWAB #adaptation #question #recommendation #what
- What Are the Expectations of Users of an Adaptive Recommendation Service Which Aims to Reduce Driver Distraction? (NW, BK, CW, TA, KB), pp. 517–528.
- HIMI-IKC-2015-BrunsVGZS #personalisation #recommendation #visual notation #what
- What Should I Read Next? A Personalized Visual Publication Recommender System (SB, ACV, CG, MZ, US), pp. 89–100.
- HIMI-IKC-2015-Kaewkiriya #design #framework #recommendation #student
- Design of Framework for Students Recommendation System in Information Technology Skills (TK), pp. 109–117.
- HIMI-IKC-2015-VerstocktSB #recommendation
- Map-Based Linking of Geographic User and Content Profiles for Hyperlocal Content Recommendation (SV, VS, KB), pp. 53–63.
- LCT-2015-Iitaka #online #recommendation
- Recommendation Engine for an Online Drill System (TI), pp. 238–248.
- LCT-2015-RodriguezOD #hybrid #learning #recommendation #repository #student
- A Student-Centered Hybrid Recommender System to Provide Relevant Learning Objects from Repositories (PAR, DAO, NDD), pp. 291–300.
- LCT-2015-Sirisaengtaksin #approach #design #education #mobile #online #recommendation #research
- A Notification and Recommender Mobile App for Educational Online Discussion: A Design Research Approach (KS, LO, NA), pp. 325–336.
- ICEIS-v1-2015-Kozmina #empirical #recommendation
- An Empirical Study of Recommendations in OLAP Reporting Tool (NK), pp. 303–312.
- ICEIS-v2-2015-CeredaN #adaptation #automaton #recommendation
- A Recommendation Engine based on Adaptive Automata (PRMC, JJN), pp. 594–601.
- ICEIS-v2-2015-SmirnovP #architecture #hybrid #network #peer-to-peer #privacy #recommendation
- Privacy-preserving Hybrid Peer-to-Peer Recommendation System Architecture — Locality-Sensitive Hashing in Structured Overlay Network (AVS, AP), pp. 532–542.
- ECIR-2015-HopfgartnerB #realtime #recommendation
- Join the Living Lab: Evaluating News Recommendations in Real-Time (FH, TB), pp. 826–829.
- ECIR-2015-SchedlHFT #algorithm #music #on the #recommendation
- On the Influence of User Characteristics on Music Recommendation Algorithms (MS, DH, KF, MT), pp. 339–345.
- ECIR-2015-ValcarcePB #case study #modelling #recommendation
- A Study of Smoothing Methods for Relevance-Based Language Modelling of Recommender Systems (DV, JP, AB), pp. 346–351.
- ECIR-2015-WangHS0W0 #network #problem #recommendation #social #towards
- Toward the New Item Problem: Context-Enhanced Event Recommendation in Event-Based Social Networks (ZW, PH, LS, KC, SW, GC), pp. 333–338.
- KDD-2015-BerkovskyF #personalisation #recommendation #web
- Web Personalization and Recommender Systems (SB, JF), pp. 2307–2308.
- KDD-2015-FrenoSJA #modelling #ranking #recommendation
- One-Pass Ranking Models for Low-Latency Product Recommendations (AF, MS, RJ, CA), pp. 1789–1798.
- KDD-2015-GrbovicRDBSBS #e-commerce #recommendation #scalability
- E-commerce in Your Inbox: Product Recommendations at Scale (MG, VR, ND, NB, JS, VB, DS), pp. 1809–1818.
- KDD-2015-HolleczekAYJAGL #agile #metric #recommendation
- Traffic Measurement and Route Recommendation System for Mass Rapid Transit (MRT) (TH, DTA, SY, YJ, SA, HLG, SL, ASN), pp. 1859–1868.
- KDD-2015-HsiehLZ #big data #quality #recommendation
- Inferring Air Quality for Station Location Recommendation Based on Urban Big Data (HPH, SDL, YZ), pp. 437–446.
- KDD-2015-JiangZZY #e-commerce #predict #recommendation
- Life-stage Prediction for Product Recommendation in E-commerce (PJ, YZ, YZ, QY), pp. 1879–1888.
- KDD-2015-Kawamae #realtime #recommendation
- Real Time Recommendations from Connoisseurs (NK), pp. 537–546.
- KDD-2015-QianCMSL #named #recommendation
- SCRAM: A Sharing Considered Route Assignment Mechanism for Fair Taxi Route Recommendations (SQ, JC, FLM, IS, ML), pp. 955–964.
- KDD-2015-SongMT #network #performance #recommendation
- Efficient Latent Link Recommendation in Signed Networks (DS, DAM, DT), pp. 1105–1114.
- KDD-2015-WangWY #collaboration #learning #recommendation
- Collaborative Deep Learning for Recommender Systems (HW, NW, DYY), pp. 1235–1244.
- KDD-2015-WangYCSSZ #generative #named #recommendation
- Geo-SAGE: A Geographical Sparse Additive Generative Model for Spatial Item Recommendation (WW, HY, LC, YS, SWS, XZ), pp. 1255–1264.
- KDD-2015-ZhangW #recommendation
- A Collective Bayesian Poisson Factorization Model for Cold-start Local Event Recommendation (WZ, JW), pp. 1455–1464.
- KDD-2015-ZhongJYYZL #recommendation
- Stock Constrained Recommendation in Tmall (WZ, RJ, CY, XY, QZ, QL), pp. 2287–2296.
- KDD-2015-ZhongLSR #recommendation #scalability
- Building Discriminative User Profiles for Large-scale Content Recommendation (EZ, NL, YS, SR), pp. 2277–2286.
- RecSys-2015-Abel #recommendation
- We Know Where You Should Work Next Summer: Job Recommendations (FA), p. 230.
- RecSys-2015-AghdamHMB #adaptation #markov #modelling #recommendation #using
- Adapting Recommendations to Contextual Changes Using Hierarchical Hidden Markov Models (MHA, NH, BM, RDB), pp. 241–244.
- RecSys-2015-AharonAADGS #named #recommendation
- ExcUseMe: Asking Users to Help in Item Cold-Start Recommendations (MA, OA, NAE, DDC, SG, OS), pp. 83–90.
- RecSys-2015-BanksRS #game studies #recommendation #using
- The Recommendation Game: Using a Game-with-a-Purpose to Generate Recommendation Data (SB, RR, BS), pp. 305–308.
- RecSys-2015-BansalDB #profiling #recommendation
- Content Driven User Profiling for Comment-Worthy Recommendations of News and Blog Articles (TB, MKD, CB), pp. 195–202.
- RecSys-2015-BarjastehFMER #recommendation
- Cold-Start Item and User Recommendation with Decoupled Completion and Transduction (IB, RF, FM, AHE, HR), pp. 91–98.
- RecSys-2015-BetzalelSR #exclamation #quote #recommendation
- “Please, Not Now!”: A Model for Timing Recommendations (NDB, BS, LR), pp. 297–300.
- RecSys-2015-BistaffaFCR #recommendation #scalability #social
- Recommending Fair Payments for Large-Scale Social Ridesharing (FB, AF, GC, SDR), pp. 139–146.
- RecSys-2015-Bourke #multi #recommendation
- The Application of Recommender Systems in a Multi Site, Multi Domain Environment (SB), p. 229.
- RecSys-2015-ChaneyBE #network #personalisation #probability #recommendation #social #using
- A Probabilistic Model for Using Social Networks in Personalized Item Recommendation (AJBC, DMB, TER), pp. 43–50.
- RecSys-2015-ChristoffelPNB #random #recommendation #scalability
- Blockbusters and Wallflowers: Accurate, Diverse, and Scalable Recommendations with Random Walks (FC, BP, CN, AB), pp. 163–170.
- RecSys-2015-DalyBS #recommendation
- Crowd Sourcing, with a Few Answers: Recommending Commuters for Traffic Updates (ED, MB, FS), pp. 253–256.
- RecSys-2015-Das #recommendation
- Making Meaningful Restaurant Recommendations At OpenTable (SD), p. 235.
- RecSys-2015-EkstrandKHK #algorithm #case study #recommendation
- Letting Users Choose Recommender Algorithms: An Experimental Study (MDE, DK, FMH, JAK), pp. 11–18.
- RecSys-2015-ElsweilerH #automation #recommendation #towards
- Towards Automatic Meal Plan Recommendations for Balanced Nutrition (DE, MH), pp. 313–316.
- RecSys-2015-ForsatiBMER #algorithm #named #performance #recommendation #trust
- PushTrust: An Efficient Recommendation Algorithm by Leveraging Trust and Distrust Relations (RF, IB, FM, AHE, HR), pp. 51–58.
- RecSys-2015-GeRM #recommendation
- Health-aware Food Recommender System (MG, FR, DM), pp. 333–334.
- RecSys-2015-Geuens #behaviour #hybrid #recommendation
- Factorization Machines for Hybrid Recommendation Systems Based on Behavioral, Product, and Customer Data (SG), pp. 379–382.
- RecSys-2015-GriesnerAN #matrix #recommendation #towards
- POI Recommendation: Towards Fused Matrix Factorization with Geographical and Temporal Influences (JBG, TA, HN), pp. 301–304.
- RecSys-2015-Guardia-Sebaoun #modelling #performance #recommendation
- Latent Trajectory Modeling: A Light and Efficient Way to Introduce Time in Recommender Systems (ÉGS, VG, PG), pp. 281–284.
- RecSys-2015-Guy #personalisation #recommendation
- The Role of User Location in Personalized Search and Recommendation (IG), p. 236.
- RecSys-2015-HarperXKCCT #recommendation
- Putting Users in Control of their Recommendations (FMH, FX, HK, KC, SC, LGT), pp. 3–10.
- RecSys-2015-HarveyE #automation #personalisation #recommendation
- Automated Recommendation of Healthy, Personalised Meal Plans (MH, DE), pp. 327–328.
- RecSys-2015-HopfgartnerKHT #realtime #recommendation
- Real-time Recommendation of Streamed Data (FH, BK, TH, RT), pp. 361–362.
- RecSys-2015-HuD #machine learning #recommendation #scalability
- Scalable Recommender Systems: Where Machine Learning Meets Search (SYDH, JD), pp. 365–366.
- RecSys-2015-JannachLJ #adaptation #evaluation #recommendation
- Adaptation and Evaluation of Recommendations for Short-term Shopping Goals (DJ, LL, MJ), pp. 211–218.
- RecSys-2015-KangDS #recommendation
- Elsevier Journal Finder: Recommending Journals for your Paper (NK, MAD, RJAS), pp. 261–264.
- RecSys-2015-KaragiannakisGS #automation #category theory #recommendation
- OSMRec Tool for Automatic Recommendation of Categories on Spatial Entities in OpenStreetMap (NK, GG, DS, SA), pp. 337–338.
- RecSys-2015-KoukiFFEG #flexibility #framework #hybrid #named #probability #recommendation
- HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems (PK, SF, JRF, ME, LG), pp. 99–106.
- RecSys-2015-KowaldL #algorithm #case study #comparative #folksonomy #recommendation
- Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study (DK, EL), pp. 265–268.
- RecSys-2015-LerallutGR #realtime #recommendation #scalability
- Large-Scale Real-Time Product Recommendation at Criteo (RL, DG, NLR), p. 232.
- RecSys-2015-LimML #feedback #recommendation
- Top-N Recommendation with Missing Implicit Feedback (DL, JM, GRGL), pp. 309–312.
- RecSys-2015-LiuK #named #recommendation
- Kibitz: End-to-End Recommendation System Builder (QL, DRK), pp. 335–336.
- RecSys-2015-LiWTM #community #predict #rating #recommendation #social
- Overlapping Community Regularization for Rating Prediction in Social Recommender Systems (HL, DW, WT, NM), pp. 27–34.
- RecSys-2015-LuC #personalisation #recommendation
- Exploiting Geo-Spatial Preference for Personalized Expert Recommendation (HL, JC), pp. 67–74.
- RecSys-2015-Ludmann #data type #online #recommendation
- Online Recommender Systems based on Data Stream Management Systems (CAL), pp. 391–394.
- RecSys-2015-MacedoMS #network #recommendation #social
- Context-Aware Event Recommendation in Event-based Social Networks (AQdM, LBM, RLTS), pp. 123–130.
- RecSys-2015-MagnusonDM #process #recommendation #twitter #using
- Event Recommendation using Twitter Activity (AM, VD, DM), pp. 331–332.
- RecSys-2015-MaksaiGF #evaluation #metric #online #performance #predict #recommendation
- Predicting Online Performance of News Recommender Systems Through Richer Evaluation Metrics (AM, FG, BF), pp. 179–186.
- RecSys-2015-MarinhoTP #algorithm #question #recommendation
- Are Real-World Place Recommender Algorithms Useful in Virtual World Environments? (LBM, CT, DP), pp. 245–248.
- RecSys-2015-MojsilovicV #enterprise #perspective #recommendation
- Assessing Expertise in the Enterprise: The Recommender Point of View (AM, KRV), p. 231.
- RecSys-2015-Nemeth #recommendation #scalability
- Scaling Up Recommendation Services in Many Dimensions (BN), p. 233.
- RecSys-2015-NeumannS #recommendation
- Recommendations for Live TV (JN, HS), p. 228.
- RecSys-2015-NovA #recommendation #social #symmetry
- Asymmetric Recommendations: The Interacting Effects of Social Ratings? Direction and Strength on Users’ Ratings (ON, OA), pp. 249–252.
- RecSys-2015-SaidB #evaluation #recommendation
- Replicable Evaluation of Recommender Systems (AS, AB), pp. 363–364.
- RecSys-2015-Salehi-AbariB #network #recommendation #social
- Preference-oriented Social Networks: Group Recommendation and Inference (ASA, CB), pp. 35–42.
- RecSys-2015-Santos #hybrid #recommendation
- A Hybrid Recommendation System Based on Human Curiosity (AMdS), pp. 367–370.
- RecSys-2015-SeminarioW #collaboration #recommendation
- Nuke ’Em Till They Go: Investigating Power User Attacks to Disparage Items in Collaborative Recommenders (CES, DCW), pp. 293–296.
- RecSys-2015-ShalomBRZA #matter #quality #recommendation
- Data Quality Matters in Recommender Systems (OSS, SB, RR, EZ, AA), pp. 257–260.
- RecSys-2015-SongCL #incremental #matrix #recommendation
- Incremental Matrix Factorization via Feature Space Re-learning for Recommender System (QS, JC, HL), pp. 277–280.
- RecSys-2015-SousaDBM #analysis #named #network #recommendation
- CNARe: Co-authorship Networks Analysis and Recommendations (GAdS, MAD, MAB, MMM), pp. 329–330.
- RecSys-2015-SteckZJ #interactive #recommendation #tutorial
- Interactive Recommender Systems: Tutorial (HS, RvZ, CJ), pp. 359–360.
- RecSys-2015-Unger #recommendation
- Latent Context-Aware Recommender Systems (MU), pp. 383–386.
- RecSys-2015-Valcarce #modelling #recommendation #statistics
- Exploring Statistical Language Models for Recommender Systems (DV), pp. 375–378.
- RecSys-2015-ValcarcePB #case study #modelling #recommendation
- A Study of Priors for Relevance-Based Language Modelling of Recommender Systems (DV, JP, AB), pp. 237–240.
- RecSys-2015-VerstrepenG #recommendation
- Top-N Recommendation for Shared Accounts (KV, BG), pp. 59–66.
- RecSys-2015-ZhaoZ0 #recommendation
- Risk-Hedged Venture Capital Investment Recommendation (XZ, WZ, JW), pp. 75–82.
- RecSys-2015-ZhaoZFT #e-commerce #personalisation #recommendation
- E-commerce Recommendation with Personalized Promotion (QZ, YZ, DF, FT), pp. 219–226.
- RecSys-2015-Zoeter #recommendation
- Recommendations in Travel (OZ), p. 234.
- SEKE-2015-Colace0LLYC #adaptation #perspective #recommendation
- An Adaptive Contextual Recommender System: a Slow Intelligence Perspective (FC, LG, SL, ML, DY, SKC), pp. 64–71.
- SEKE-2015-LiuXC #learning #recommendation
- Context-aware Recommendation System with Anonymous User Profile Learning (YL, YX, MC), pp. 93–98.
- SEKE-2015-RamosCRSAP #analysis #architecture #recommendation
- Recommendation in the Digital TV Domain: an Architecture based on Textual Description Analysis (FBAR, AAMC, RRdS, GS, HOdA, AP), pp. 99–104.
- SEKE-2015-ZhaoSCZ #crowdsourcing #developer #effectiveness #recommendation #towards
- Towards Effective Developer Recommendation in Software Crowdsourcing (SZ, BS, YC, HZ), pp. 326–329.
- SIGIR-2015-ChengS #music #named #recommendation
- VenueMusic: A Venue-Aware Music Recommender System (ZC, JS), pp. 1029–1030.
- SIGIR-2015-ChenLZLS #approximate #matrix #named #recommendation #scalability
- WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation (CC, DL, YZ, QL, LS), pp. 303–312.
- SIGIR-2015-GuoL #automation #generative #graph #music #recommendation
- Automatic Feature Generation on Heterogeneous Graph for Music Recommendation (CG, XL), pp. 807–810.
- SIGIR-2015-GuyLDB #case study #enterprise #recommendation #social
- Islands in the Stream: A Study of Item Recommendation within an Enterprise Social Stream (IG, RL, TD, EB), pp. 665–674.
- SIGIR-2015-HaraSKF #recommendation
- Reducing Hubness: A Cause of Vulnerability in Recommender Systems (KH, IS, KK, KF), pp. 815–818.
- SIGIR-2015-KneesS #bibliography #music #perspective #recommendation #retrieval #tutorial
- Music Retrieval and Recommendation: A Tutorial Overview (PK, MS), pp. 1133–1136.
- SIGIR-2015-LiCLPK #named #ranking #recommendation
- Rank-GeoFM: A Ranking based Geographical Factorization Method for Point of Interest Recommendation (XL, GC, XL, TANP, SK), pp. 433–442.
- SIGIR-2015-LuZZW #personalisation #recommendation
- Exploiting User and Business Attributes for Personalized Business Recommendation (KL, YZ, LZ, SW), pp. 891–894.
- SIGIR-2015-McAuleyTSH #recommendation
- Image-Based Recommendations on Styles and Substitutes (JJM, CT, QS, AvdH), pp. 43–52.
- SIGIR-2015-ReinandaMR #aspect-oriented #mining #ranking #recommendation
- Mining, Ranking and Recommending Entity Aspects (RR, EM, MdR), pp. 263–272.
- SIGIR-2015-SchedlH #music #recommendation
- Tailoring Music Recommendations to Users by Considering Diversity, Mainstreaminess, and Novelty (MS, DH), pp. 947–950.
- SIGIR-2015-ShokouhiG #query #ranking #recommendation
- From Queries to Cards: Re-ranking Proactive Card Recommendations Based on Reactive Search History (MS, QG), pp. 695–704.
- SIGIR-2015-SunXZLGX #multi #personalisation #recommendation
- Multi-source Information Fusion for Personalized Restaurant Recommendation (JS, YX, YZ, JL, CG, HX), pp. 983–986.
- SIGIR-2015-TangJLZL #personalisation #recommendation
- Personalized Recommendation via Parameter-Free Contextual Bandits (LT, YJ, LL, CZ, TL), pp. 323–332.
- SIGIR-2015-VolkovsY #effectiveness #feedback #modelling #recommendation
- Effective Latent Models for Binary Feedback in Recommender Systems (MV, GWY), pp. 313–322.
- SIGIR-2015-WangGLXWC #learning #recommendation #representation
- Learning Hierarchical Representation Model for NextBasket Recommendation (PW, JG, YL, JX, SW, XC), pp. 403–412.
- SIGIR-2015-WangSWZSLL #cumulative #recommendation
- An Entity Class-Dependent Discriminative Mixture Model for Cumulative Citation Recommendation (JW, DS, QW, ZZ, LS, LL, CYL), pp. 635–644.
- SIGIR-2015-XuWW #collaboration #personalisation #ranking #recommendation #semantics
- Personalized Semantic Ranking for Collaborative Recommendation (SX, SW, LW), pp. 971–974.
- SIGIR-2015-YaoSQWSH #recommendation #social #using
- Context-aware Point-of-Interest Recommendation Using Tensor Factorization with Social Regularization (LY, QZS, YQ, XW, AS, QH), pp. 1007–1010.
- SIGIR-2015-ZhangC #category theory #correlation #named #recommendation #social
- GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for Point-of-Interest Recommendations (JDZ, CYC), pp. 443–452.
- SIGIR-2015-ZhangCQZL #multi #personalisation #recommendation #similarity
- When Personalization Meets Conformity: Collective Similarity based Multi-Domain Recommendation (XZ, JC, SQ, ZZ, HL), pp. 1019–1022.
- SAC-2015-AissiGSS #evaluation #framework #personalisation #query #recommendation
- Personalized recommendation of SOLAP queries: theoretical framework and experimental evaluation (SA, MSG, TS, LBS), pp. 1008–1014.
- SAC-2015-AliK #approach #effectiveness #recommendation
- An effective approach to group recommendation based on belief propagation (IA, SWK), pp. 1148–1153.
- SAC-2015-BurityE #approach #recommendation
- A quantitative, evidence-based approach for recommending software modules (TB, GEdS), pp. 1449–1456.
- SAC-2015-CamaraHJJ #graph #modelling #persuasion #recommendation #social #using
- Using graph-based models in a persuasive social recommendation system (JPC, SH, JJ, VJ), pp. 189–194.
- SAC-2015-CapelleMHFV #hybrid #recommendation #semantics
- Bing-SF-IDF+: a hybrid semantics-driven news recommender (MC, MM, FH, FF, DV), pp. 732–739.
- SAC-2015-Chaudhary #experience #recommendation
- Experience in item based recommender system (AC), pp. 1112–1114.
- SAC-2015-DominguesSBMPR #metadata #multi #personalisation #ranking #recommendation
- Applying multi-view based metadata in personalized ranking for recommender systems (MAD, CVS, FMMB, MGM, MGCP, SOR), pp. 1105–1107.
- SAC-2015-HsiehNKC #approximate #performance #query #recommendation
- Efficient approximate thompson sampling for search query recommendation (CCH, JN, TK, JC), pp. 740–746.
- SAC-2015-LommatzschA #realtime #recommendation
- Real-time recommendations for user-item streams (AL, SA), pp. 1039–1046.
- SAC-2015-MatuszykVSJG #incremental #matrix #recommendation
- Forgetting methods for incremental matrix factorization in recommender systems (PM, JV, MS, AMJ, JG), pp. 947–953.
- SAC-2015-PaivaBSIJ #behaviour #learning #recommendation #student
- Improving pedagogical recommendations by classifying students according to their interactional behavior in a gamified learning environment (ROAP, IIB, APdS, SI, PAJ), pp. 233–238.
- SAC-2015-RodriguesJD #recommendation #using
- Accelerating recommender systems using GPUs (AVR, AJ, ID), pp. 879–884.
- SAC-2015-Zheng #algorithm #recommendation
- Improve general contextual slim recommendation algorithms by factorizing contexts (YZ), pp. 929–930.
- ESEC-FSE-2015-LinPXZZ #interactive #recommendation
- Clone-based and interactive recommendation for modifying pasted code (YL, XP, ZX, DZ, WZ), pp. 520–531.
- ESEC-FSE-2015-PhamSS #automation #developer #recommendation
- Automatically recommending test code examples to inexperienced developers (RP, YS, KS), pp. 890–893.
- ICSE-v2-2015-Beyer #api #developer #mobile #named #recommendation
- DIETs: Recommender Systems for Mobile API Developers (SB), pp. 859–862.
- ECSA-2014-HeroldM #architecture #consistency #recommendation #refactoring
- Recommending Refactorings to Re-establish Architectural Consistency (SH, MM), pp. 390–397.
- ASE-2014-BavotaPTPOC #recommendation #refactoring
- Recommending refactorings based on team co-maintenance patterns (GB, SP, NT, MDP, RO, GC), pp. 337–342.
- ASE-2014-MkaouerKBDC #interactive #optimisation #recommendation #refactoring #using
- Recommendation system for software refactoring using innovization and interactive dynamic optimization (MWM, MK, SB, KD, MÓC), pp. 331–336.
- HT-2014-KowaldLT #benchmark #framework #metric #named #recommendation #standard #towards
- TagRec: towards a standardized tag recommender benchmarking framework (DK, EL, CT), pp. 305–307.
- HT-2014-LacicKT #named #online #recommendation #scalability #social
- SocRecM: a scalable social recommender engine for online marketplaces (EL, DK, CT), pp. 308–310.
- HT-2014-QuerciaSA #recommendation
- The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city (DQ, RS, LMA), pp. 116–125.
- HT-2014-TrevisiolCB #personalisation #recommendation
- Buon appetito: recommending personalized menus (MT, LC, RABY), pp. 327–329.
- VLDB-2014-DaiQJWW #personalisation #recommendation
- A Personalized Recommendation System for NetEase Dating Site (CD, FQ, WJ, ZW, ZW), pp. 1760–1765.
- VLDB-2014-GuptaSGGZLL #detection #graph #online #realtime #recommendation #scalability #twitter
- Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs (PG, VS, AG, SG, VZ, QL, JL), pp. 1379–1380.
- VLDB-2014-LuCLL #recommendation
- Show Me the Money: Dynamic Recommendations for Revenue Maximization (WL, SC, KL, LVSL), pp. 1785–1796.
- VLDB-2014-WangLHCSWLT #named #realtime #recommendation
- R3: A Real-Time Route Recommendation System (HW, GL, HH, SC, BS, HW, WSL, KLT), pp. 1549–1552.
- VLDB-2014-ZhangJSR #big data #recommendation #using
- Getting Your Big Data Priorities Straight: A Demonstration of Priority-based QoS using Social-network-driven Stock Recommendation (RZ, RJ, PS, LR), pp. 1665–1668.
- CSMR-WCRE-2014-GeSDM #how #query #recommendation
- How the Sando search tool recommends queries (XG, DCS, KD, ERMH), pp. 425–428.
- CSMR-WCRE-2014-KashiwabaraOIHYI #mining #recommendation #using
- Recommending verbs for rename method using association rule mining (YK, YO, TI, YH, TY, KI), pp. 323–327.
- CSMR-WCRE-2014-RahmanYR #exception #fault #ide #programming #recommendation #towards
- Towards a context-aware IDE-based meta search engine for recommendation about programming errors and exceptions (MMR, SY, CKR), pp. 194–203.
- ICPC-2014-GhafariGMT #mining #recommendation #testing
- Mining unit tests for code recommendation (MG, CG, AM, GT), pp. 142–145.
- ICPC-2014-SilvaTV #automation #recommendation #refactoring
- Recommending automated extract method refactorings (DS, RT, MTV), pp. 146–156.
- ICPC-2014-SteidlE #fault #maintenance #recommendation #refactoring
- Prioritizing maintainability defects based on refactoring recommendations (DS, SE), pp. 168–176.
- ICSME-2014-PonzanelliBPOL #named #recommendation #self
- Prompter: A Self-Confident Recommender System (LP, GB, MDP, RO, ML), pp. 577–580.
- ICSME-2014-WangG #design #recommendation #refactoring #using
- Recommending Clones for Refactoring Using Design, Context, and History (WW, MWG), pp. 331–340.
- ICSME-2014-WangLVS #named #recommendation
- EnTagRec: An Enhanced Tag Recommendation System for Software Information Sites (SW, DL, BV, AS), pp. 291–300.
- ICSME-2014-YuWYL #git #recommendation
- Reviewer Recommender of Pull-Requests in GitHub (YY, HW, GY, CXL), pp. 609–612.
- SCAM-2014-RahmanR14a #exception #on the #recommendation
- On the Use of Context in Recommending Exception Handling Code Examples (MMR, CKR), pp. 285–294.
- CHI-2014-HongA #modelling #performance #predict #recommendation #user interface
- Novice use of a predictive human performance modeling tool to produce UI recommendations (KWH, RSA), pp. 2251–2254.
- CHI-2014-LoeppHZ #collaboration #elicitation #recommendation
- Choice-based preference elicitation for collaborative filtering recommender systems (BL, TH, JZ), pp. 3085–3094.
- CHI-2014-NorvalAH #network #recommendation #social #what
- What’s on your mind?: investigating recommendations for inclusive social networking and older adults (CN, JLA, VLH), pp. 3923–3932.
- HCI-AIMT-2014-LackeyBM #communication #interactive #recommendation #requirements
- Recommended Considerations for Human-Robot Interaction Communication Requirements (SJL, DJB, SGM), pp. 663–674.
- HCI-AS-2014-Lopez-OrnelasAZ #recommendation
- A Geo-collaborative Recommendation Tool to Help Urban Mobility (ÉLO, RAM, JSZH), pp. 466–472.
- HCI-AS-2014-ZiesemerMS #exclamation #gamification #recommendation
- Just Rate It! Gamification as Part of Recommendation (AdCAZ, LM, MSS), pp. 786–796.
- HCI-TMT-2014-SousaB #recommendation #statistics
- Recommender System to Support Chart Constructions with Statistical Data (TAFdS, SDJB), pp. 631–642.
- HIMI-AS-2014-AsikisL #recommendation #research
- Operations Research and Recommender Systems (TA, GL), pp. 579–589.
- HIMI-DE-2014-GombosK #dataset #query #recommendation
- SPARQL Query Writing with Recommendations Based on Datasets (GG, AK), pp. 310–319.
- LCT-TRE-2014-BraunhoferEGR #learning #mobile #recommendation
- Context Dependent Preference Acquisition with Personality-Based Active Learning in Mobile Recommender Systems (MB, ME, MG, FR), pp. 105–116.
- ICEIS-v1-2014-TitoRSFTS #information management #named #recommendation
- RecRoute — A Bus Route Recommendation System Based on Users’ Contextual Information (AdOT, ARRR, LMdS, LAVF, PRT, ACS), pp. 357–366.
- ICEIS-v2-2014-BorattoC #clustering #collaboration #recommendation #using
- Using Collaborative Filtering to Overcome the Curse of Dimensionality when Clustering Users in a Group Recommender System (LB, SC), pp. 564–572.
- ICEIS-v2-2014-PanfilenkoEML #impact analysis #independence #model transformation #recommendation #requirements
- Recommendations for Impact Analysis of Model Transformations — From the Requirements Model to the Platform-independent Model (DVP, AE, CM, PL), pp. 428–434.
- CIKM-2014-AllahoL #latency #online #recommendation
- Increasing the Responsiveness of Recommended Expert Collaborators for Online Open Projects (MYA, WCL), pp. 749–758.
- CIKM-2014-DahimeneCM #named #network #recommendation #social
- RecLand: A Recommender System for Social Networks (RD, CC, CdM), pp. 2063–2065.
- CIKM-2014-DeveaudAMMO #named #personalisation #recommendation
- SmartVenues: Recommending Popular and Personalised Venues in a City (RD, MDA, JM, CM, IO), pp. 2078–2080.
- CIKM-2014-LiuWSM #recommendation
- Exploiting Geographical Neighborhood Characteristics for Location Recommendation (YL, WW, AS, CM), pp. 739–748.
- CIKM-2014-LiuYGS #feedback #graph #pseudo #ranking #recommendation
- Meta-Path-Based Ranking with Pseudo Relevance Feedback on Heterogeneous Graph for Citation Recommendation (XL, YY, CG, YS), pp. 121–130.
- CIKM-2014-MahdabiC #mining #network #recommendation #retrieval
- Query-Driven Mining of Citation Networks for Patent Citation Retrieval and Recommendation (PM, FC), pp. 1659–1668.
- CIKM-2014-MaLG #collaboration #community #recommendation #trust
- Improving Recommendation Accuracy by Combining Trust Communities and Collaborative Filtering (XM, HL, ZG), pp. 1951–1954.
- CIKM-2014-NtoutsiSRK #clustering #difference #quote #recommendation
- “Strength Lies in Differences”: Diversifying Friends for Recommendations through Subspace Clustering (EN, KS, KR, HPK), pp. 729–738.
- CIKM-2014-ShiKBLH #learning #named #recommendation
- CARS2: Learning Context-aware Representations for Context-aware Recommendations (YS, AK, LB, ML, AH), pp. 291–300.
- CIKM-2014-VlachosFMKV #clustering #quality #recommendation
- Improving Co-Cluster Quality with Application to Product Recommendations (MV, FF, CM, ATK, VGV), pp. 679–688.
- CIKM-2014-WangGL #modelling #personalisation #recommendation #transaction
- Modeling Retail Transaction Data for Personalized Shopping Recommendation (PW, JG, YL), pp. 1979–1982.
- CIKM-2014-WangJDY #adaptation #recommendation #social
- User Interests Imbalance Exploration in Social Recommendation: A Fitness Adaptation (TW, XJ, XD, XY), pp. 281–290.
- CIKM-2014-WangPX #collaboration #matrix #named #recommendation
- HGMF: Hierarchical Group Matrix Factorization for Collaborative Recommendation (XW, WP, CX), pp. 769–778.
- CIKM-2014-YangSR #recommendation
- Constrained Question Recommendation in MOOCs via Submodularity (DY, JS, CPR), pp. 1987–1990.
- CIKM-2014-YuanCS #graph #recommendation
- Graph-based Point-of-interest Recommendation with Geographical and Temporal Influences (QY, GC, AS), pp. 659–668.
- CIKM-2014-ZhengMB #recommendation
- Deviation-Based Contextual SLIM Recommenders (YZ, BM, RDB), pp. 271–280.
- CIKM-2014-ZhongPXYM #adaptation #collaboration #learning #recommendation
- Adaptive Pairwise Preference Learning for Collaborative Recommendation with Implicit Feedbacks (HZ, WP, CX, ZY, ZM), pp. 1999–2002.
- ECIR-2014-BreussT #interactive #learning #recommendation #social #social media
- Learning from User Interactions for Recommending Content in Social Media (MB, MT), pp. 598–604.
- ECIR-2014-BrilhanteMNPR #named #recommendation
- TripBuilder: A Tool for Recommending Sightseeing Tours (IRB, JAFdM, FMN, RP, CR), pp. 771–774.
- ECIR-2014-HofmannSBR #bias #evaluation #recommendation
- Effects of Position Bias on Click-Based Recommender Evaluation (KH, AS, AB, MdR), pp. 624–630.
- ECIR-2014-Lommatzsch #realtime #recommendation #using
- Real-Time News Recommendation Using Context-Aware Ensembles (AL), pp. 51–62.
- ECIR-2014-RikitianskiiHC #personalisation #recommendation
- A Personalised Recommendation System for Context-Aware Suggestions (AR, MH, FC), pp. 63–74.
- ECIR-2014-ZhangZWS #network #recommendation
- Content + Attributes: A Latent Factor Model for Recommending Scientific Papers in Heterogeneous Academic Networks (CZ, XZ, KW, JS), pp. 39–50.
- ICPR-2014-DominguesMMSR #information management #recommendation #topic #using
- Using Contextual Information from Topic Hierarchies to Improve Context-Aware Recommender Systems (MAD, MGM, RMM, CVS, SOR), pp. 3606–3611.
- ICPR-2014-ManzatoDMR #feedback #personalisation #ranking #recommendation #topic
- Improving Personalized Ranking in Recommender Systems with Topic Hierarchies and Implicit Feedback (MGM, MAD, RMM, SOR), pp. 3696–3701.
- KDD-2014-AmatriainM #problem #recommendation #tutorial
- The recommender problem revisited: morning tutorial (XA, BM), p. 1971.
- KDD-2014-DiaoQWSJW #aspect-oriented #modelling #recommendation #sentiment
- Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) (QD, MQ, CYW, AJS, JJ, CW), pp. 193–202.
- KDD-2014-JagadeeshPBDS #image #recommendation #scalability #visual notation
- Large scale visual recommendations from street fashion images (VJ, RP, AB, WD, NS), pp. 1925–1934.
- KDD-2014-LeeLTS #modelling #recommendation #scalability
- Modeling impression discounting in large-scale recommender systems (PL, LVSL, MT, SS), pp. 1837–1846.
- KDD-2014-LianZXSCR #matrix #modelling #named #recommendation
- GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation (DL, CZ, XX, GS, EC, YR), pp. 831–840.
- KDD-2014-LiL #quality #recommendation
- Matching users and items across domains to improve the recommendation quality (CYL, SDL), pp. 801–810.
- KDD-2014-LuIBL #recommendation #social
- Optimal recommendations under attraction, aversion, and social influence (WL, SI, SB, LVSL), pp. 811–820.
- KDD-2014-QuZLLX #effectiveness #recommendation
- A cost-effective recommender system for taxi drivers (MQ, HZ, JL, GL, HX), pp. 45–54.
- KDD-2014-RenLYKGWH #clustering #effectiveness #named #recommendation
- ClusCite: effective citation recommendation by information network-based clustering (XR, JL, XY, UK, QG, LW, JH), pp. 821–830.
- KDD-2014-TangTL #future of #recommendation #social #social media
- Recommendation in social media: recent advances and new frontiers (JT, JT, HL), p. 1977.
- KDD-2014-YuanCL #generative #named #recommendation
- COM: a generative model for group recommendation (QY, GC, CYL), pp. 163–172.
- KDD-2014-ZhaoGHJWL #microblog #recommendation #what
- We know what you want to buy: a demographic-based system for product recommendation on microblogs (WXZ, YG, YH, HJ, YW, XL), pp. 1935–1944.
- KDD-2014-ZhuXGC #mobile #privacy #recommendation #security
- Mobile app recommendations with security and privacy awareness (HZ, HX, YG, EC), pp. 951–960.
- KDIR-2014-FukumotoSSM #collaboration #recommendation
- Incorporating Guest Preferences into Collaborative Filtering for Hotel Recommendation (FF, HS, YS, SM), pp. 22–30.
- KDIR-2014-HasnaMDP #recommendation #sentiment
- Sentiment Polarity Extension for Context-Sensitive Recommender Systems (OLH, FCM, MD, RP), pp. 126–137.
- KDIR-2014-MeguebliKDP14a #personalisation #recommendation
- Stories Around You — A Two-Stage Personalized News Recommendation (YM, MK, BLD, FP), pp. 473–479.
- KDIR-2014-SaiaBC #modelling #recommendation #semantics
- Semantic Coherence-based User Profile Modeling in the Recommender Systems Context (RS, LB, SC), pp. 154–161.
- KDIR-2014-TasciC #recommendation
- A Media Tracking and News Recommendation System (ST, IC), pp. 53–60.
- KDIR-2014-UtkuA #mobile #recommendation
- A Mobile Location-Aware Recommendation System (SU, CEA), pp. 176–183.
- KEOD-2014-AliE #collaboration #recommendation #semantics
- Semantic-based Collaborative Filtering for Enhancing Recommendation (GA, AE), pp. 176–185.
- KEOD-2014-TarakciC #recommendation #using
- Using Hypergraph-based User Profile in a Recommendation System (HT, NKC), pp. 27–35.
- KMIS-2014-WangABN #recommendation #semantics #towards
- Towards a Recommender System from Semantic Traces for Decision Aid (NW, MHA, JPAB, EN), pp. 274–279.
- MLDM-2014-DzubaB #mining #music #recommendation
- Mining Users Playbacks History for Music Recommendations (AD, DB), pp. 422–430.
- RecSys-2014-AdamopoulosT14a #bias #collaboration #on the #probability #recommendation
- On over-specialization and concentration bias of recommendations: probabilistic neighborhood selection in collaborative filtering systems (PA, AT), pp. 153–160.
- RecSys-2014-Aiolli #feedback #optimisation #recommendation
- Convex AUC optimization for top-N recommendation with implicit feedback (FA), pp. 293–296.
- RecSys-2014-Amatriain #problem #recommendation #revisited
- The recommender problem revisited (XA), pp. 397–398.
- RecSys-2014-BachrachFGKKNP #recommendation #using
- Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces (YB, YF, RGB, LK, NK, NN, UP), pp. 257–264.
- RecSys-2014-BadenesBCGHMNPSSXYZ #automation #people #recommendation #social #social media
- System U: automatically deriving personality traits from social media for people recommendation (HB, MNB, JC, LG, EMH, JM, JWN, AP, JS, BAS, YX, HY, MXZ), pp. 373–374.
- RecSys-2014-Ben-ShimonTFH #as a service #configuration management #monitoring #recommendation
- Configuring and monitoring recommender system as a service (DBS, AT, MF, JH), pp. 363–364.
- RecSys-2014-BhagatWIT #learning #matrix #recommendation #using
- Recommending with an agenda: active learning of private attributes using matrix factorization (SB, UW, SI, NT), pp. 65–72.
- RecSys-2014-Braunhofer #recommendation
- Hybridisation techniques for cold-starting context-aware recommender systems (MB), pp. 405–408.
- RecSys-2014-BraunhoferCR #hybrid #recommendation
- Switching hybrid for cold-starting context-aware recommender systems (MB, VC, FR), pp. 349–352.
- RecSys-2014-CantadorC #recommendation #tutorial
- Tutorial on cross-domain recommender systems (IC, PC), pp. 401–402.
- RecSys-2014-Christakopoulou #independence #recommendation
- Moving beyond linearity and independence in top-N recommender systems (EC), pp. 409–412.
- RecSys-2014-CremonesiQ #question #recommendation
- Cross-domain recommendations without overlapping data: myth or reality? (PC, MQ), pp. 297–300.
- RecSys-2014-DalyBKM #multi #recommendation
- Multi-criteria journey aware housing recommender system (EMD, AB, AK, RM), pp. 325–328.
- RecSys-2014-DeryKRS #elicitation #recommendation
- Preference elicitation for narrowing the recommended list for groups (LND, MK, LR, BS), pp. 333–336.
- RecSys-2014-EkstrandHWK #algorithm #difference #recommendation
- User perception of differences in recommender algorithms (MDE, FMH, MCW, JAK), pp. 161–168.
- RecSys-2014-GaoTL #network #personalisation #recommendation #social
- Personalized location recommendation on location-based social networks (HG, JT, HL), pp. 399–400.
- RecSys-2014-GarcinFDABH #evaluation #online #recommendation
- Offline and online evaluation of news recommender systems at swissinfo.ch (FG, BF, OD, AA, CB, AH), pp. 169–176.
- RecSys-2014-GueyeAN #algorithm #recommendation
- A parameter-free algorithm for an optimized tag recommendation list size (MG, TA, HN), pp. 233–240.
- RecSys-2014-GuyG #recommendation #social #tutorial
- Social recommender system tutorial (IG, WG), pp. 403–404.
- RecSys-2014-HaririMB #adaptation #interactive #recommendation
- Context adaptation in interactive recommender systems (NH, BM, RDB), pp. 41–48.
- RecSys-2014-HarmanOAG #recommendation #trust
- Dynamics of human trust in recommender systems (JLH, JO, TFA, CG), pp. 305–308.
- RecSys-2014-JannachF #data mining #mining #modelling #process #recommendation
- Recommendation-based modeling support for data mining processes (DJ, SF), pp. 337–340.
- RecSys-2014-KellerR #e-commerce #framework #named #recommendation
- Cosibon: an E-commerce like platform enabling bricks-and-mortar stores to use sophisticated product recommender systems (TK, MR), pp. 367–368.
- RecSys-2014-KluverK #behaviour #recommendation
- Evaluating recommender behavior for new users (DK, JAK), pp. 121–128.
- RecSys-2014-KrishnanPFG #bias #learning #recommendation #social
- A methodology for learning, analyzing, and mitigating social influence bias in recommender systems (SK, JP, MJF, KG), pp. 137–144.
- RecSys-2014-LingLK #approach #recommendation
- Ratings meet reviews, a combined approach to recommend (GL, MRL, IK), pp. 105–112.
- RecSys-2014-Liu0L #recommendation
- Recommending user generated item lists (YL, MX, LVSL), pp. 185–192.
- RecSys-2014-LiuA #framework #recommendation #towards
- Towards a dynamic top-N recommendation framework (XL, KA), pp. 217–224.
- RecSys-2014-LoniS #library #named #recommendation
- WrapRec: an easy extension of recommender system libraries (BL, AS), pp. 377–378.
- RecSys-2014-Mayeku #personalisation #recommendation
- Enhancing personalization and learner engagement through context-aware recommendation in TEL (BM), pp. 413–415.
- RecSys-2014-Nguyen #lifecycle #recommendation
- Improving recommender systems: user roles and lifecycles (TTN), pp. 417–420.
- RecSys-2014-NoiaORTS #analysis #recommendation #towards
- An analysis of users’ propensity toward diversity in recommendations (TDN, VCO, JR, PT, EDS), pp. 285–288.
- RecSys-2014-PalovicsBKKF #online #recommendation
- Exploiting temporal influence in online recommendation (RP, AAB, LK, TK, EF), pp. 273–280.
- RecSys-2014-PedroK #collaboration #recommendation
- Question recommendation for collaborative question answering systems with RankSLDA (JSP, AK), pp. 193–200.
- RecSys-2014-PeraN14a #automation #recommendation
- Automating readers’ advisory to make book recommendations for K-12 readers (MSP, YKN), pp. 9–16.
- RecSys-2014-SaidB #benchmark #comparative #evaluation #framework #metric #recommendation
- Comparative recommender system evaluation: benchmarking recommendation frameworks (AS, AB), pp. 129–136.
- RecSys-2014-SaidB14a #evaluation #named #recommendation #tool support
- Rival: a toolkit to foster reproducibility in recommender system evaluation (AS, AB), pp. 371–372.
- RecSys-2014-SaidDLT #challenge #recommendation
- Recommender systems challenge 2014 (AS, SD, BL, DT), pp. 387–388.
- RecSys-2014-SaveskiM #learning #recommendation
- Item cold-start recommendations: learning local collective embeddings (MS, AM), pp. 89–96.
- RecSys-2014-SedhainSBXC #collaboration #recommendation #social
- Social collaborative filtering for cold-start recommendations (SS, SS, DB, LX, JC), pp. 345–348.
- RecSys-2014-SeminarioW #recommendation
- Attacking item-based recommender systems with power items (CES, DCW), pp. 57–64.
- RecSys-2014-SuiB #feedback #online #rank #recommendation
- Clinical online recommendation with subgroup rank feedback (YS, JWB), pp. 289–292.
- RecSys-2014-TangJLL #personalisation #recommendation
- Ensemble contextual bandits for personalized recommendation (LT, YJ, LL, TL), pp. 73–80.
- RecSys-2014-TrevisiolASJ #graph #recommendation
- Cold-start news recommendation with domain-dependent browse graph (MT, LMA, RS, AJ), pp. 81–88.
- RecSys-2014-Vahedian #hybrid #network #recommendation
- Weighted hybrid recommendation for heterogeneous networks (FV), pp. 429–432.
- RecSys-2014-VanchinathanNBK #process #recommendation
- Explore-exploit in top-N recommender systems via Gaussian processes (HPV, IN, FDB, AK), pp. 225–232.
- RecSys-2014-VargasBKC #recommendation
- Coverage, redundancy and size-awareness in genre diversity for recommender systems (SV, LB, AK, PC), pp. 209–216.
- RecSys-2014-VargasC #recommendation
- Improving sales diversity by recommending users to items (SV, PC), pp. 145–152.
- RecSys-2014-WaldnerV #exclamation #game studies #recommendation #timeline #twitter
- Emphasize, don’t filter!: displaying recommendations in Twitter timelines (WW, JV), pp. 313–316.
- RecSys-2014-XuPA #predict #ranking #recommendation
- Controlled experimentation in recommendations, ranking & response prediction (YX, RP, JA), p. 389.
- RecSys-2014-YangAR #constraints #online #recommendation
- Question recommendation with constraints for massive open online courses (DY, DA, CPR), pp. 49–56.
- RecSys-2014-Zhang #recommendation
- Browser-oriented universal cross-site recommendation and explanation based on user browsing logs (YZ), pp. 433–436.
- RecSys-2014-Zheng #algorithm #recommendation #similarity
- Deviation-based and similarity-based contextual SLIM recommendation algorithms (YZ), pp. 437–440.
- RecSys-2014-ZhengMB #algorithm #named #recommendation
- CSLIM: contextual SLIM recommendation algorithms (YZ, BM, RDB), pp. 301–304.
- SEKE-2014-TianWHZG #feedback #recommendation #using #web #web service
- Cold-Start Web Service Recommendation Using Implicit Feedback (GT, JW, KH, WZ, PG), pp. 371–376.
- SIGIR-2014-ChengSM #adaptation #music #named #personalisation #recommendation #social
- Just-for-me: an adaptive personalization system for location-aware social music recommendation (ZC, JS, TM), pp. 1267–1268.
- SIGIR-2014-ChengYWL #behaviour #multi #recommendation
- Group latent factor model for recommendation with multiple user behaviors (JC, TY, JW, HL), pp. 995–998.
- SIGIR-2014-ChenJZBZSY #category theory #recommendation
- Does product recommendation meet its waterloo in unexplored categories?: no, price comes to help (JC, QJ, SZ, SB, LZ, ZS, YY), pp. 667–676.
- SIGIR-2014-GrausDTWR #communication #email #enterprise #graph #recommendation #using
- Recipient recommendation in enterprises using communication graphs and email content (DG, DvD, MT, WW, MdR), pp. 1079–1082.
- SIGIR-2014-Ifada #modelling #personalisation #recommendation #topic #using
- A tag-based personalized item recommendation system using tensor modeling and topic model approaches (NI), p. 1280.
- SIGIR-2014-LinSKC #modelling #recommendation
- New and improved: modeling versions to improve app recommendation (JL, KS, MYK, TSC), pp. 647–656.
- SIGIR-2014-LivneGTDA #difference #named #recommendation #using
- CiteSight: supporting contextual citation recommendation using differential search (AL, VG, JT, STD, EA), pp. 807–816.
- SIGIR-2014-LiWM #recommendation #social
- A revisit to social network-based recommender systems (HL, DW, NM), pp. 1239–1242.
- SIGIR-2014-LuLMWXW #interactive #microblog #recommendation #topic
- Computing and applying topic-level user interactions in microblog recommendation (XL, PL, HM, SW, AX, BW), pp. 843–846.
- SIGIR-2014-Ma #on the #recommendation #social
- On measuring social friend interest similarities in recommender systems (HM), pp. 465–474.
- SIGIR-2014-NguyenKB #process #recommendation
- Gaussian process factorization machines for context-aware recommendations (TVN, AK, LB), pp. 63–72.
- SIGIR-2014-RonenGKB #community #recommendation #social #social media
- Recommending social media content to community owners (IR, IG, EK, MB), pp. 243–252.
- SIGIR-2014-SchedlVF #microblog #music #recommendation
- User geospatial context for music recommendation in microblogs (MS, AV, KF), pp. 987–990.
- SIGIR-2014-SedhaiS #hashtag #recommendation #twitter
- Hashtag recommendation for hyperlinked tweets (SS, AS), pp. 831–834.
- SIGIR-2014-TangWZ #recommendation
- Cross-language context-aware citation recommendation in scientific articles (XT, XW, XZ), pp. 817–826.
- SIGIR-2014-Vargas #evaluation #information retrieval #recommendation
- Novelty and diversity enhancement and evaluation in recommender systems and information retrieval (SV), p. 1281.
- SIGIR-2014-YaoHHZ #modelling #recommendation #trust
- Modeling dual role preferences for trust-aware recommendation (WY, JH, GH, YZ), pp. 975–978.
- SIGIR-2014-YaoSNAL #internet #recommendation
- Exploring recommendations in internet of things (LY, QZS, AHHN, HA, XL), pp. 855–858.
- SIGIR-2014-ZhangL0ZLM #analysis #modelling #recommendation #sentiment
- Explicit factor models for explainable recommendation based on phrase-level sentiment analysis (YZ, GL, MZ, YZ, YL, SM), pp. 83–92.
- SIGIR-2014-ZhangTZX #algorithm #recommendation
- Addressing cold start in recommender systems: a semi-supervised co-training algorithm (MZ, JT, XZ, XX), pp. 73–82.
- SIGIR-2014-ZhangWRS #performance #recommendation
- Preference preserving hashing for efficient recommendation (ZZ, QW, LR, LS), pp. 183–192.
- SIGIR-2014-ZhouKWAD #detection #recommendation
- Detection of abnormal profiles on group attacks in recommender systems (WZ, YSK, JW, SA, GD), pp. 955–958.
- SIGIR-2014-ZhuHLT #recommendation
- Bundle recommendation in ecommerce (TZ, PH, JL, LT), pp. 657–666.
- SKY-2014-ExmanN #network #performance #recommendation #social
- Location-based Fast Recommendation Social Network (IE, EN), pp. 55–62.
- SAC-2014-ChenCWD #recommendation #scalability
- Instant expert hunting: building an answerer recommender system for a large scale Q&A website (TC, JC, HW, YD), pp. 260–265.
- SAC-2014-ChenZTWS #modelling #recommendation
- Comparing the staples in latent factor models for recommender systems (CC, LZ, AT, KW, SV), pp. 91–96.
- SAC-2014-GuoZTBY #empirical #recommendation #trust
- From ratings to trust: an empirical study of implicit trust in recommender systems (GG, JZ, DT, AB, NYS), pp. 248–253.
- SAC-2014-HongHKK #mobile #music #recommendation #smarttech
- Context-aware music recommendation in mobile smart devices (JH, WSH, JHK, SWK), pp. 1463–1468.
- SAC-2014-LiuMHHSC #algorithm #hybrid #recommendation #twitter
- A hybrid algorithm for recommendation twitter peers (JNKL, ZM, YXH, YLH, SCKS, VWSC), pp. 644–649.
- SAC-2014-NgoPLS #image #named #query #recommendation
- Recommend-Me: recommending query regions for image search (TDN, SP, DDL, SS), pp. 913–918.
- SAC-2014-RolimBCCAPM #approach #multimodal #recommendation
- A recommendation approach for digital TV systems based on multimodal features (RR, FB, AC, GC, HOdA, AP, AFM), pp. 289–291.
- SAC-2014-ShangHHCK #personalisation #recommendation #towards
- Beyond personalization and anonymity: towards a group-based recommender system (SS, YH, PH, PC, SRK), pp. 266–273.
- SAC-2014-UnoI #music #named #recommendation
- MALL: a life log based music recommendation system and portable music player (AU, TI), pp. 939–944.
- SAC-2014-WangMLG #recommendation #social
- Recommendation based on weighted social trusts and item relationships (DW, JM, TL, LG), pp. 254–259.
- SAC-2014-YangZL #algorithm #debugging #developer #effectiveness #multi #recommendation
- Utilizing a multi-developer network-based developer recommendation algorithm to fix bugs effectively (GY, TZ, BL), pp. 1134–1139.
- SAC-2014-ZhengBM #empirical #recommendation
- Splitting approaches for context-aware recommendation: an empirical study (YZ, RDB, BM), pp. 274–279.
- ASE-2013-ThungWLL #api #automation #feature model #recommendation
- Automatic recommendation of API methods from feature requests (FT, SW, DL, JLL), pp. 290–300.
- HT-2013-WuCH #recommendation #using
- Using personality to adjust diversity in recommender systems (WW, LC, LH), pp. 225–229.
- HT-2013-YangZYW #personalisation #recommendation #sentiment
- A sentiment-enhanced personalized location recommendation system (DY, DZ, ZY, ZW), pp. 119–128.
- SIGMOD-2013-VartakM #named #recommendation
- CHIC: a combination-based recommendation system (MV, SM), pp. 981–984.
- VLDB-2013-ChenYYC #named #recommendation #twitter
- TeRec: A Temporal Recommender System Over Tweet Stream (CC, HY, JY, BC), pp. 1254–1257.
- VLDB-2013-SarwatAM #database #recommendation #relational
- A RecDB in Action: Recommendation Made Easy in Relational Databases (MS, JLA, MFM), pp. 1242–1245.
- ITiCSE-WGR-2013-ShumbaFSTFTSABH #recommendation #women
- Cybersecurity, women and minorities: findings and recommendations from a preliminary investigation (RS, KFB, ES, CT, GF, CT, CS, GA, RB, LH), pp. 1–14.
- MSR-2013-NaguibNBH #debugging #process #recommendation #using
- Bug report assignee recommendation using activity profiles (HN, NN, BB, DH), pp. 22–30.
- MSR-2013-ShokripourAKZ #debugging #recommendation #why
- Why so complicated? simple term filtering and weighting for location-based bug report assignment recommendation (RS, JA, ZMK, SZ), pp. 2–11.
- MSR-2013-XiaLWZ #recommendation
- Tag recommendation in software information sites (XX, DL, XW, BZ), pp. 287–296.
- WCRE-2013-SalesTMV #dependence #recommendation #refactoring #set #using
- Recommending Move Method refactorings using dependency sets (VS, RT, LFM, MTV), pp. 232–241.
- WCRE-2013-ThungLL #automation #library #recommendation
- Automated library recommendation (FT, DL, JLL), pp. 182–191.
- WCRE-2013-XiaLWZ #debugging #developer #recommendation
- Accurate developer recommendation for bug resolution (XX, DL, XW, BZ), pp. 72–81.
- ICALP-v2-2013-BachrachP #big data #performance #pseudo #recommendation #sketching #using
- Sketching for Big Data Recommender Systems Using Fast Pseudo-random Fingerprints (YB, EP), pp. 459–471.
- CSCW-2013-SaidFJA #algorithm #collaboration #evaluation #recommendation
- User-centric evaluation of a K-furthest neighbor collaborative filtering recommender algorithm (AS, BF, BJJ, SA), pp. 1399–1408.
- HCI-AS-2013-BitontoLRR #collaboration #process #recommendation
- Recommendation of Collaborative Activities in E-learning Environments (PDB, ML, TR, VR), pp. 484–492.
- HCI-UC-2013-Baguma #design #mobile #recommendation
- Mobile Money Services in Uganda: Design Gaps and Recommendations (RB), pp. 249–258.
- HCI-UC-2013-BelliniBNP #network #recommendation
- A Static and Dynamic Recommendations System for Best Practice Networks (PB, IB, PN, MP), pp. 259–268.
- HIMI-D-2013-IsogaiN #modelling #motivation #music #recommendation
- Modeling of Music Recommendation Methods to Promote the User’s Singing Motivation — For Next-Generation Japanese Karaoke Systems (SI, MN), pp. 439–448.
- HIMI-D-2013-ShigeyoshiTSTIU #empirical #energy #recommendation #social
- Social Experiment on Advisory Recommender System for Energy-Saving (HS, KT, RS, HT, SI, TU), pp. 545–554.
- HIMI-LCCB-2013-ShiTS #consistency #nondeterminism #online #recommendation
- Timing and Basis of Online Product Recommendation: The Preference Inconsistency Paradox (AS, CHT, CLS), pp. 531–539.
- HIMI-LCCB-2013-WuN #interactive #process #recommendation
- Integrating the Anchoring Process with Preference Stability for Interactive Movie Recommendations (ICW, YFN), pp. 639–648.
- OCSC-2013-Popescu13b #problem #recommendation
- Group Recommender Systems as a Voting Problem (GP), pp. 412–421.
- ICEIS-v1-2013-Al-ShamriA #collaboration #correlation #recommendation
- Fuzzy-weighted Pearson Correlation Coefficient for Collaborative Recommender Systems (MYHAS, NHAA), pp. 409–414.
- ICEIS-v1-2013-Kozmina #recommendation
- Adding Recommendations to OLAP Reporting Tool (NK), pp. 169–176.
- ICEIS-v2-2013-DjuanaXLJC #ontology #problem #recommendation
- An Ontology-based Method for Sparsity Problem in Tag Recommendation (ED, YX, YL, AJ, CC), pp. 467–474.
- ICEIS-v2-2013-KuCY #approach #recommendation
- Effect of Product Type and Recommendation Approach on Consumers’ Intention to Purchase Recommended Products (YCK, CHC, CSY), pp. 475–480.
- ICEIS-v2-2013-PanfilenkoHEL #architecture #model transformation #recommendation
- Model Transformation Recommendations for Service-Oriented Architectures (DVP, KH, BE, EL), pp. 248–256.
- ICEIS-v2-2013-SierraCVCV #education #re-engineering #recommendation
- Microworld-type Ethnoeducational Computer Materials to Support the Teaching of Nasa-Yuwe — Recommendations from a Software Engineering Disciplines Viewpoint for Constructing Microworld-type Ethnoeducational Materials Aimed at Supporting Nasa Yuwe Language Teaching (LMS, EASC, JAV, TRC, EMV), pp. 526–531.
- ICEIS-v2-2013-ZhangWSP #linked data #network #open data #recommendation #social
- Event Recommendation in Social Networks with Linked Data Enablement (YZ, HW, VSS, VKP), pp. 371–379.
- CIKM-2013-FerenceYL #network #recommendation #social
- Location recommendation for out-of-town users in location-based social networks (GF, MY, WCL), pp. 721–726.
- CIKM-2013-LiuLAM #mining #personalisation #recommendation
- Personalized point-of-interest recommendation by mining users’ preference transition (XL, YL, KA, CM), pp. 733–738.
- CIKM-2013-LiYZ #recommendation
- Scientific articles recommendation (YL, MY, Z(Z), pp. 1147–1156.
- CIKM-2013-ThostVS #query #recommendation
- Query matching for report recommendation (VT, KV, DS), pp. 1391–1400.
- CIKM-2013-ZhaoLHCH #network #recommendation #social
- Community-based user recommendation in uni-directional social networks (GZ, MLL, WH, WC, HH), pp. 189–198.
- ECIR-2013-BelemMAG #recommendation
- Exploiting Novelty and Diversity in Tag Recommendation (FB, EFM, JMA, MAG), pp. 380–391.
- ECIR-2013-Cleger-TamayoFHT #predict #quality #recommendation
- Being Confident about the Quality of the Predictions in Recommender Systems (SCT, JMFL, JFH, NT), pp. 411–422.
- ECIR-2013-McParlaneMW #detection #recommendation #semantics
- Detecting Friday Night Party Photos: Semantics for Tag Recommendation (PJM, YM, IW), pp. 756–759.
- ECIR-2013-ZhuGCLN #graph #query #recommendation
- Recommending High Utility Query via Session-Flow Graph (XZ, JG, XC, YL, WN), pp. 642–655.
- KDD-2013-ChenHL #multi #recommendation
- Making recommendations from multiple domains (WC, WH, MLL), pp. 892–900.
- KDD-2013-KabburNK #modelling #named #recommendation #similarity
- FISM: factored item similarity models for top-N recommender systems (SK, XN, GK), pp. 659–667.
- KDD-2013-LiuFYX #learning #recommendation
- Learning geographical preferences for point-of-interest recommendation (BL, YF, ZY, HX), pp. 1043–1051.
- KDD-2013-NiemannW #approach #collaboration #recommendation
- A new collaborative filtering approach for increasing the aggregate diversity of recommender systems (KN, MW), pp. 955–963.
- KDD-2013-YinLLW #perspective #recommendation
- Silence is also evidence: interpreting dwell time for recommendation from psychological perspective (PY, PL, WCL, MW), pp. 989–997.
- KDD-2013-YinSCHC #named #recommendation
- LCARS: a location-content-aware recommender system (HY, YS, BC, ZH, LC), pp. 221–229.
- KDD-2013-ZhangWF #recommendation
- Combining latent factor model with location features for event-based group recommendation (WZ, JW, WF), pp. 910–918.
- KDIR-KMIS-2013-BerkaniN #collaboration #learning #recommendation #semantics
- Semantic Collaborative Filtering for Learning Objects Recommendation (LB, ON), pp. 52–63.
- KDIR-KMIS-2013-NartTF #automation #personalisation #recommendation #using
- Personalized Recommendation and Explanation by using Keyphrases Automatically extracted from Scientific Literature (DDN, CT, FF), pp. 96–103.
- KDIR-KMIS-2013-OliveiraOC #process #recommendation #student
- Recommending the Right Activities based on the Needs of each Student (EO, MGdO, PMC), pp. 183–190.
- MLDM-2013-ChungJKL #identification #personalisation #recommendation
- Personalized Expert-Based Recommender System: Training C-SVM for Personalized Expert Identification (YC, HWJ, JK, JHL), pp. 434–441.
- RecSys-2013-Adamopoulos #predict #rating #recommendation
- Beyond rating prediction accuracy: on new perspectives in recommender systems (PA), pp. 459–462.
- RecSys-2013-AdamopoulosT #collaboration #predict #recommendation #using
- Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems (PA, AT), pp. 351–354.
- RecSys-2013-AharonABLABLRS #named #online #persistent #recommendation #set
- OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings (MA, NA, EB, RL, RA, TB, LL, RR, OS), pp. 375–378.
- RecSys-2013-AhnPLL #graph #recommendation
- A heterogeneous graph-based recommendation simulator (YA, SP, SL, SgL), pp. 471–472.
- RecSys-2013-Aiolli #dataset #performance #recommendation #scalability
- Efficient top-n recommendation for very large scale binary rated datasets (FA), pp. 273–280.
- RecSys-2013-AlanaziB #markov #modelling #recommendation #using
- A people-to-people content-based reciprocal recommender using hidden markov models (AA, MB), pp. 303–306.
- RecSys-2013-AzariaHKEWN #recommendation
- Movie recommender system for profit maximization (AA, AH, SK, AE, OW, IN), pp. 121–128.
- RecSys-2013-BabasCT #personalisation #recommendation #what
- You are what you consume: a bayesian method for personalized recommendations (KB, GC, ET), pp. 221–228.
- RecSys-2013-BelemSAG #recommendation #topic
- Topic diversity in tag recommendation (FB, RLTS, JMA, MAG), pp. 141–148.
- RecSys-2013-Ben-Shimon #algorithm #recommendation
- Anytime algorithms for top-N recommenders (DBS), pp. 463–466.
- RecSys-2013-BlancoR #feedback #recommendation
- Acquiring user profiles from implicit feedback in a conversational recommender system (HB, FR), pp. 307–310.
- RecSys-2013-BlankRS #graph #keyword #recommendation
- Leveraging the citation graph to recommend keywords (IB, LR, GS), pp. 359–362.
- RecSys-2013-BugaychenkoD #network #personalisation #recommendation #social
- Musical recommendations and personalization in a social network (DB, AD), pp. 367–370.
- RecSys-2013-ChowJKS #data analysis #difference #recommendation
- Differential data analysis for recommender systems (RC, HJ, BPK, GS), pp. 323–326.
- RecSys-2013-CremonesiGQ #recommendation
- Evaluating top-n recommendations “when the best are gone” (PC, FG, MQ), pp. 339–342.
- RecSys-2013-DoerfelJ #analysis #evaluation #recommendation
- An analysis of tag-recommender evaluation procedures (SD, RJ), pp. 343–346.
- RecSys-2013-DongOSMS #recommendation #sentiment
- Sentimental product recommendation (RD, MPO, MS, KM, BS), pp. 411–414.
- RecSys-2013-Dooms #generative #hybrid #personalisation #recommendation
- Dynamic generation of personalized hybrid recommender systems (SD), pp. 443–446.
- RecSys-2013-DzyaburaT #how #recommendation
- Not by search alone: how recommendations complement search results (DD, AT), pp. 371–374.
- RecSys-2013-Ester #network #recommendation #social
- Recommendation in social networks (ME), pp. 491–492.
- RecSys-2013-GaoTHL #network #recommendation #social
- Exploring temporal effects for location recommendation on location-based social networks (HG, JT, XH, HL), pp. 93–100.
- RecSys-2013-GarcinDF #personalisation #recommendation
- Personalized news recommendation with context trees (FG, CD, BF), pp. 105–112.
- RecSys-2013-GarcinF #framework #personalisation #recommendation
- PEN RecSys: a personalized news recommender systems framework (FG, BF), pp. 469–470.
- RecSys-2013-GraschFR #interactive #named #recommendation #speech #towards
- ReComment: towards critiquing-based recommendation with speech interaction (PG, AF, FR), pp. 157–164.
- RecSys-2013-Guo #recommendation #similarity #trust
- Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems (GG), pp. 451–454.
- RecSys-2013-GuoZTY #e-commerce #recommendation
- Prior ratings: a new information source for recommender systems in e-commerce (GG, JZ, DT, NYS), pp. 383–386.
- RecSys-2013-HammarKN #e-commerce #recommendation #using
- Using maximum coverage to optimize recommendation systems in e-commerce (MH, RK, BJN), pp. 265–272.
- RecSys-2013-HaririMB #recommendation
- Query-driven context aware recommendation (NH, BM, RDB), pp. 9–16.
- RecSys-2013-HuE #modelling #online #recommendation #social #social media #topic
- Spatial topic modeling in online social media for location recommendation (BH, ME), pp. 25–32.
- RecSys-2013-HuY #learning #process #recommendation
- Interview process learning for top-n recommendation (FH, YY), pp. 331–334.
- RecSys-2013-KaminskasRS #hybrid #music #recommendation #using
- Location-aware music recommendation using auto-tagging and hybrid matching (MK, FR, MS), pp. 17–24.
- RecSys-2013-KaratzoglouBS #learning #rank #recommendation
- Learning to rank for recommender systems (AK, LB, YS), pp. 493–494.
- RecSys-2013-KhroufT #hybrid #linked data #open data #recommendation #using
- Hybrid event recommendation using linked data and user diversity (HK, RT), pp. 185–192.
- RecSys-2013-KoenigsteinK #recommendation #scalability #towards
- Towards scalable and accurate item-oriented recommendations (NK, YK), pp. 419–422.
- RecSys-2013-KoenigsteinP #embedded #feature model #matrix #recommendation
- Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection (NK, UP), pp. 129–136.
- RecSys-2013-KrestelS #recommendation #topic
- Recommending patents based on latent topics (RK, PS), pp. 395–398.
- RecSys-2013-LacerdaVZ #interactive #recommendation
- Exploratory and interactive daily deals recommendation (AL, AV, NZ), pp. 439–442.
- RecSys-2013-MouraoRKM #hybrid #recommendation
- Exploiting non-content preference attributes through hybrid recommendation method (FM, LCdR, JAK, WMJ), pp. 177–184.
- RecSys-2013-NewellM #design #evaluation #recommendation
- Design and evaluation of a client-side recommender system (CN, LM), pp. 473–474.
- RecSys-2013-NguyenKWHEWR #experience #rating #recommendation #user interface
- Rating support interfaces to improve user experience and recommender accuracy (TTN, DK, TYW, PMH, MDE, MCW, JR), pp. 149–156.
- RecSys-2013-OstuniNSM #feedback #linked data #open data #recommendation
- Top-N recommendations from implicit feedback leveraging linked open data (VCO, TDN, EDS, RM), pp. 85–92.
- RecSys-2013-PanCCY #personalisation #recommendation #social
- Diffusion-aware personalized social update recommendation (YP, FC, KC, YY), pp. 69–76.
- RecSys-2013-PeraN #personalisation #recommendation #what
- What to read next?: making personalized book recommendations for K-12 users (MSP, YKN), pp. 113–120.
- RecSys-2013-PessemierDM13a #recommendation
- A food recommender for patients in a care facility (TDP, SD, LM), pp. 209–212.
- RecSys-2013-PizzatoB #network #people #recommendation #social
- Beyond friendship: the art, science and applications of recommending people to people in social networks (LAP, AB), pp. 495–496.
- RecSys-2013-PuF #comprehension #matrix #recommendation #relational
- Understanding and improving relational matrix factorization in recommender systems (LP, BF), pp. 41–48.
- RecSys-2013-RonenKZN #collaboration #recommendation
- Selecting content-based features for collaborative filtering recommenders (RR, NK, EZ, NN), pp. 407–410.
- RecSys-2013-RonenKZSYH #named #recommendation
- Sage: recommender engine as a cloud service (RR, NK, EZ, MS, RY, NHW), pp. 475–476.
- RecSys-2013-SaayaRSS #challenge #recommendation #web
- The curated web: a recommendation challenge (ZS, RR, MS, BS), pp. 101–104.
- RecSys-2013-SavirBS #recommendation
- Recommending improved configurations for complex objects with an application in travel planning (AS, RIB, GS), pp. 391–394.
- RecSys-2013-Seminario #collaboration #recommendation #robust
- Accuracy and robustness impacts of power user attacks on collaborative recommender systems (CES), pp. 447–450.
- RecSys-2013-SharmaY #community #learning #recommendation
- Pairwise learning in recommendation: experiments with community recommendation on linkedin (AS, BY), pp. 193–200.
- RecSys-2013-Shi #approach #graph #recommendation #similarity
- Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach (LS), pp. 57–64.
- RecSys-2013-SilbermannBR #recommendation
- Sample selection for MCMC-based recommender systems (TS, IB, SR), pp. 403–406.
- RecSys-2013-Steck #evaluation #predict #ranking #recommendation
- Evaluation of recommendations: rating-prediction and ranking (HS), pp. 213–220.
- RecSys-2013-SuYCY #personalisation #ranking #recommendation
- Set-oriented personalized ranking for diversified top-n recommendation (RS, LY, KC, YY), pp. 415–418.
- RecSys-2013-TaghaviBS #recommendation
- Agent-based computational investing recommender system (MT, KB, ES), pp. 455–458.
- RecSys-2013-TianJ #graph #recommendation #using
- Recommending scientific articles using bi-relational graph-based iterative RWR (GT, LJ), pp. 399–402.
- RecSys-2013-VahabiALBL #orthogonal #query #recommendation
- Orthogonal query recommendation (HV, MA, DL, RABY, ALO), pp. 33–40.
- RecSys-2013-WangHZL #collaboration #multi #on the fly #online #recommendation
- Online multi-task collaborative filtering for on-the-fly recommender systems (JW, SCHH, PZ, ZL), pp. 237–244.
- RecSys-2013-WestonYW #learning #rank #recommendation #statistics
- Learning to rank recommendations with the k-order statistic loss (JW, HY, RJW), pp. 245–248.
- RecSys-2013-WilsonS #collaboration #recommendation
- When power users attack: assessing impacts in collaborative recommender systems (DCW, CES), pp. 427–430.
- RecSys-2013-WuLCHLCH #online #personalisation #recommendation
- Personalized next-song recommendation in online karaokes (XW, QL, EC, LH, JL, CC, GH), pp. 137–140.
- RecSys-2013-XuBATMK #recommendation
- Catch-up TV recommendations: show old favourites and find new ones (MX, SB, SA, ST, AM, IK), pp. 285–294.
- RecSys-2013-YuRSSKGNH #feedback #network #recommendation
- Recommendation in heterogeneous information networks with implicit user feedback (XY, XR, YS, BS, UK, QG, BN, JH), pp. 347–350.
- RecSys-2013-ZhangP #recommendation #social #social media
- Recommending branded products from social media (YZ, MP), pp. 77–84.
- RecSys-2013-ZhangSKH #artificial reality #recommendation #using
- Improving augmented reality using recommender systems (ZZ, SS, SRK, PH), pp. 173–176.
- SEKE-2013-DuHCLH #incremental #named #personalisation #recommendation
- ABEY: an Incremental Personalized Method Based on Attribute Entropy for Recommender Systems (S) (XD, TH, ZC, JL, CH), pp. 318–321.
- SEKE-2013-WangWTZ #evaluation #named #network #recommendation #trust
- STERS: A System for Service Trustworthiness Evaluation and Recommendation based on the Trust Network (S) (YW, JW, YT, JZ), pp. 322–325.
- SIGIR-2013-BalogR #classification #cumulative #ranking #recommendation
- Cumulative citation recommendation: classification vs. ranking (KB, HR), pp. 941–944.
- SIGIR-2013-Belem #recommendation
- Beyond relevance: on novelty and diversity in tag recommendation (FB), p. 1140.
- SIGIR-2013-ChenHL #modelling #recommendation
- Modeling user’s receptiveness over time for recommendation (WC, WH, MLL), pp. 373–382.
- SIGIR-2013-ChenHL13a #feedback #recommendation
- Tagcloud-based explanation with feedback for recommender systems (WC, WH, MLL), pp. 945–948.
- SIGIR-2013-FanLGLC #collaboration #recommendation
- Collaborative factorization for recommender systems (CF, YL, JG, ZL, XC), pp. 949–953.
- SIGIR-2013-FeildA #query #recommendation
- Task-aware query recommendation (HAF, JA), pp. 83–92.
- SIGIR-2013-KarkaliPV #realtime #recommendation
- Match the news: a firefox extension for real-time news recommendation (MK, DP, MV), pp. 1117–1118.
- SIGIR-2013-LinSKC #modelling #recommendation #twitter
- Addressing cold-start in app recommendation: latent user models constructed from twitter followers (JL, KS, MYK, TSC), pp. 283–292.
- SIGIR-2013-LukeSM #framework #recommendation
- A framework for specific term recommendation systems (TL, PS, PM), pp. 1093–1094.
- SIGIR-2013-Ma #case study #recommendation #social
- An experimental study on implicit social recommendation (HM), pp. 73–82.
- SIGIR-2013-McParlaneMJ #on the #recommendation
- On contextual photo tag recommendation (PJM, YM, JMJ), pp. 965–968.
- SIGIR-2013-RoitmanCME #modelling #recommendation
- Modeling the uniqueness of the user preferences for recommendation systems (HR, DC, YM, IE), pp. 777–780.
- SIGIR-2013-SappelliVK #personalisation #recommendation #using
- Recommending personalized touristic sights using google places (MS, SV, WK), pp. 781–784.
- SIGIR-2013-SchallerHE #distributed #recommendation #visitor
- RecSys for distributed events: investigating the influence of recommendations on visitor plans (RS, MH, DE), pp. 953–956.
- SIGIR-2013-SchedlS #hybrid #music #recommendation #retrieval
- Hybrid retrieval approaches to geospatial music recommendation (MS, DS), pp. 793–796.
- SIGIR-2013-ShenWYC #multi #recommendation
- Multimedia recommendation: technology and techniques (JS, MW, SY, PC), p. 1131.
- SIGIR-2013-ShouML00H #recommendation
- Competence-based song recommendation (LS, KM, XL, KC, GC, TH), pp. 423–432.
- SIGIR-2013-SonKP #analysis #locality #recommendation #semantics
- A location-based news article recommendation with explicit localized semantic analysis (JWS, AYK, SBP), pp. 293–302.
- SIGIR-2013-Wang0 #e-commerce #recommendation
- Opportunity model for e-commerce recommendation: right product; right time (JW, YZ), pp. 303–312.
- SIGIR-2013-WanLGFC #recommendation #social #social media
- Informational friend recommendation in social media (SW, YL, JG, CF, XC), pp. 1045–1048.
- SIGIR-2013-YuanCMSM #recommendation
- Time-aware point-of-interest recommendation (QY, GC, ZM, AS, NMT), pp. 363–372.
- SKY-2013-ExmanK #anti #network #recommendation #social
- An Anti-Turing Test: Social Network Friends’ Recommendations (IE, AK), pp. 55–61.
- SKY-2013-Gomes #how #ontology #recommendation #representation #using
- Representing Knowledge using Ontologies: How Search, Browse and Recommendation Can Be Performed (PG), pp. 1–3.
- MoDELS-2013-KuschkeMR #modelling #process #recommendation
- Recommending Auto-completions for Software Modeling Activities (TK, PM, PR), pp. 170–186.
- MoDELS-2013-KuschkeMR #modelling #process #recommendation
- Recommending Auto-completions for Software Modeling Activities (TK, PM, PR), pp. 170–186.
- SAC-2013-BlancoR #query #recommendation
- Inferring user utility for query revision recommendation (HB, FR), pp. 245–252.
- SAC-2013-CapelleHHF #recommendation #semantics #using
- Semantic news recommendation using wordnet and bing similarities (MC, FH, AH, FF), pp. 296–302.
- SAC-2013-CeccarelliGLNP #query #recommendation #semantics
- When entities meet query recommender systems: semantic search shortcuts (DC, SG, CL, FMN, RP), pp. 933–938.
- SAC-2013-ChenNKX #recommendation
- Users segmentations for recommendation (LC, RN, SK, YX), pp. 279–280.
- SAC-2013-HayashiIN #recommendation #visual notation
- A visual analytics tool for system logs adopting variable recommendation and feature-based filtering (AH, TI, SN), pp. 996–998.
- SAC-2013-KoutrouliT #recommendation
- Credible recommendation exchange mechanism for P2P reputation systems (EK, AT), pp. 1943–1948.
- SAC-2013-LeeKP #hybrid #recommendation
- A tour recommendation service for electric vehicles based on a hybrid orienteering model (JL, SWK, GLP), pp. 1652–1654.
- SAC-2013-LommatzschKA #hybrid #learning #modelling #recommendation #semantics
- Learning hybrid recommender models for heterogeneous semantic data (AL, BK, SA), pp. 275–276.
- SAC-2013-Manzato #feedback #metadata #recommendation
- gSVD++: supporting implicit feedback on recommender systems with metadata awareness (MGM), pp. 908–913.
- SAC-2013-RokachSSCS #recommendation
- Recommending insurance riders (LR, GS, BS, EC, GS), pp. 253–260.
- SAC-2013-ZengC #data fusion #matrix #recommendation #semistructured data
- Heterogeneous data fusion via matrix factorization for augmenting item, group and friend recommendations (WZ, LC), pp. 237–244.
- SAC-2013-ZhangL #algorithm #debugging #developer #hybrid #recommendation
- A hybrid bug triage algorithm for developer recommendation (TZ, BL), pp. 1088–1094.
- ICSE-2013-Balachandran #automation #code review #quality #recommendation #static analysis #using
- Reducing human effort and improving quality in peer code reviews using automatic static analysis and reviewer recommendation (VB), pp. 931–940.
- ICSE-2013-LeeKS #named #recommendation #visual notation
- NavClus: a graphical recommender for assisting code exploration (SL, SK, MS), pp. 1315–1318.
- ICSE-2013-SawadskyMJ #named #recommendation #web
- Reverb: recommending code-related web pages (NS, GCM, RJ), pp. 812–821.
- HT-2012-DellschaftS #quality #recommendation
- Measuring the influence of tag recommenders on the indexing quality in tagging systems (KD, SS), pp. 73–82.
- PODS-2012-DengFG #complexity #on the #problem #recommendation
- On the complexity of package recommendation problems (TD, WF, FG), pp. 261–272.
- SIGMOD-2012-BarbosaMLO #named #network #recommendation #visualisation #web
- VRRC: web based tool for visualization and recommendation on co-authorship network (abstract only) (EMB, MMM, GRL, JPMdO), p. 865.
- SIGMOD-2012-PavlidisMCBBRYMHR #recommendation #social #social media
- Anatomy of a gift recommendation engine powered by social media (YP, MM, IC, AB, RB, RR, RY, MM, VH, AR), pp. 757–764.
- VLDB-2012-KanagalAPJYP #behaviour #learning #recommendation #taxonomy #using
- Supercharging Recommender Systems using Taxonomies for Learning User Purchase Behavior (BK, AA, SP, VJ, JY, LGP), pp. 956–967.
- VLDB-2012-YinCLYC #recommendation
- Challenging the Long Tail Recommendation (HY, BC, JL, JY, CC), pp. 896–907.
- CSMR-2012-HeinemannBHH #api #recommendation
- Identifier-Based Context-Dependent API Method Recommendation (LH, VB, MH, BH), pp. 31–40.
- CSMR-2012-TerraVCB #architecture #recommendation #refactoring
- Recommending Refactorings to Reverse Software Architecture Erosion (RT, MTV, KC, RdSB), pp. 335–340.
- WCRE-2012-SteidlHJ #analysis #network #recommendation #using
- Using Network Analysis for Recommendation of Central Software Classes (DS, BH, EJ), pp. 93–102.
- CHI-2012-BauerCGSWWK #mobile #named #recommendation
- ShutEye: encouraging awareness of healthy sleep recommendations with a mobile, peripheral display (JSB, SC, BG, JWS, EW, NFW, JAK), pp. 1401–1410.
- CHI-2012-NowakN #behaviour #monitoring #online #recommendation
- Effects of behavior monitoring and perceived system benefit in online recommender systems (MN, CN), pp. 2243–2246.
- CHI-2012-OganWBRCLC #case study #collaboration #design #recommendation
- Collaboration in cognitive tutor use in latin America: field study and design recommendations (AO, EW, RSJdB, GRM, MJC, TL, AMJBdC), pp. 1381–1390.
- CHI-2012-PiorkowskiFSBBJBS #empirical #information management #recommendation
- Reactive information foraging: an empirical investigation of theory-based recommender systems for programmers (DP, SDF, CS, CB, MMB, BEJ, RKEB, CS), pp. 1471–1480.
- CSCW-2012-PriedhorskyPST #algorithm #evaluation #personalisation #recommendation
- Recommending routes in the context of bicycling: algorithms, evaluation, and the value of personalization (RP, DP, SS, LGT), pp. 979–988.
- ICEIS-J-2012-GeJG #analysis #recommendation
- Bringing Diversity to Recommendation Lists — An Analysis of the Placement of Diverse Items (MG, DJ, FG), pp. 293–305.
- ICEIS-v2-2012-GeJGH #recommendation
- Effects of the Placement of Diverse Items in Recommendation Lists (MG, DJ, FG, MH), pp. 201–208.
- CIKM-2012-AntonellisSD #recommendation
- Dynamic covering for recommendation systems (IA, ADS, SD), pp. 26–34.
- CIKM-2012-BaeK #classification #effectiveness #recommendation
- An effective category classification method based on a language model for question category recommendation on a cQA service (KB, YK), pp. 2255–2258.
- CIKM-2012-BambaSGBF #concept #recommendation #scalability #using
- The twitaholic next door.: scalable friend recommender system using a concept-sensitive hash function (PB, JS, CG, NB, JF), pp. 2275–2278.
- CIKM-2012-BlancoCLPS #exclamation #recommendation #why
- You should read this! let me explain you why: explaining news recommendations to users (RB, DC, CL, RP, FS), pp. 1995–1999.
- CIKM-2012-CaoYDWW #graph #modelling #process #recommendation #workflow
- Graph-based workflow recommendation: on improving business process modeling (BC, JY, SD, DW, ZW), pp. 1527–1531.
- CIKM-2012-CheungSM #recommendation #social #synthesis #using
- Using program synthesis for social recommendations (AC, ASL, SM), pp. 1732–1736.
- CIKM-2012-Diaz-AvilesDGSN #online #recommendation #topic #twitter #what
- What is happening right now ... that interests me?: online topic discovery and recommendation in twitter (EDA, LD, ZG, LST, WN), pp. 1592–1596.
- CIKM-2012-DuttingHW #recommendation #trust
- Maximizing revenue from strategic recommendations under decaying trust (PD, MH, IW), pp. 2283–2286.
- CIKM-2012-FangS #approach #feedback #learning #recommendation
- A latent pairwise preference learning approach for recommendation from implicit feedback (YF, LS), pp. 2567–2570.
- CIKM-2012-GaoZLH #clustering #recommendation #twitter
- Twitter hyperlink recommendation with user-tweet-hyperlink three-way clustering (DG, RZ, WL, YH), pp. 2535–2538.
- CIKM-2012-GuoMCJ #learning #recommendation #social
- Learning to recommend with social relation ensemble (LG, JM, ZC, HJ), pp. 2599–2602.
- CIKM-2012-HaKKFP #recommendation
- Top-N recommendation through belief propagation (JH, SHK, SWK, CF, SP), pp. 2343–2346.
- CIKM-2012-HuangKCMGR #recommendation
- Recommending citations: translating papers into references (WH, SK, CC, PM, CLG, LR), pp. 1910–1914.
- CIKM-2012-HwangLKL #on the #performance #recommendation #using
- On using category experts for improving the performance and accuracy in recommender systems (WSH, HJL, SWK, ML), pp. 2355–2358.
- CIKM-2012-JiangCLYWZY #recommendation #social
- Social contextual recommendation (MJ, PC, RL, QY, FW, WZ, SY), pp. 45–54.
- CIKM-2012-JiangCWYZY #multi #recommendation #relational #social
- Social recommendation across multiple relational domains (MJ, PC, FW, QY, WZ, SY), pp. 1422–1431.
- CIKM-2012-KaratzoglouBCB #mobile #recommendation
- Climbing the app wall: enabling mobile app discovery through context-aware recommendations (AK, LB, KC, MB), pp. 2527–2530.
- CIKM-2012-KoenigsteinRS #framework #matrix #performance #recommendation #retrieval
- Efficient retrieval of recommendations in a matrix factorization framework (NK, PR, YS), pp. 535–544.
- CIKM-2012-LeePKL #graph #named #novel #ranking #recommendation
- PathRank: a novel node ranking measure on a heterogeneous graph for recommender systems (SL, SP, MK, SgL), pp. 1637–1641.
- CIKM-2012-LiangXTC #recommendation #topic
- Time-aware topic recommendation based on micro-blogs (HL, YX, DT, PC), pp. 1657–1661.
- CIKM-2012-LiKBCL #approach #named #probability #query #recommendation
- DQR: a probabilistic approach to diversified query recommendation (RL, BK, BB, RC, EL), pp. 16–25.
- CIKM-2012-LiL #framework #named #recommendation
- MEET: a generalized framework for reciprocal recommender systems (LL, TL), pp. 35–44.
- CIKM-2012-LinXLHL #named #personalisation #recommendation #social
- PRemiSE: personalized news recommendation via implicit social experts (CL, RX, LL, ZH, TL), pp. 1607–1611.
- CIKM-2012-LiuTYL #recommendation
- Exploring personal impact for group recommendation (XL, YT, MY, WCL), pp. 674–683.
- CIKM-2012-MahajanRTM #algorithm #named #recommendation
- LogUCB: an explore-exploit algorithm for comments recommendation (DKM, RR, CT, AM), pp. 6–15.
- CIKM-2012-MeleBG #graph #recommendation
- The early-adopter graph and its application to web-page recommendation (IM, FB, AG), pp. 1682–1686.
- CIKM-2012-OliveiraGBBAZG #automation #query #recommendation
- Automatic query expansion based on tag recommendation (VCdO, GdCMG, FB, WCB, JMA, NZ, MAG), pp. 1985–1989.
- CIKM-2012-PapaioannouROA #assessment #distributed #effectiveness #recommendation #web
- A decentralized recommender system for effective web credibility assessment (TGP, JER, AO, KA), pp. 704–713.
- CIKM-2012-RedaPTPS #named #recommendation
- Metaphor: a system for related search recommendations (AR, YP, MT, CP, SS), pp. 664–673.
- CIKM-2012-SunWGM #hybrid #learning #rank #recommendation
- Learning to rank for hybrid recommendation (JS, SW, BJG, JM), pp. 2239–2242.
- CIKM-2012-TangZLW #mining #quality #recommendation
- Incorporating occupancy into frequent pattern mining for high quality pattern recommendation (LT, LZ, PL, MW), pp. 75–84.
- CIKM-2012-TorresHWS #query #recommendation
- Query recommendation for children (SDT, DH, IW, PS), pp. 2010–2014.
- CIKM-2012-WanKC #recommendation #social
- Location-sensitive resources recommendation in social tagging systems (CW, BK, DWC), pp. 1960–1964.
- CIKM-2012-ZhangLZW #recommendation
- Relation regularized subspace recommending for related scientific articles (QZ, JL, ZZ, LW), pp. 2503–2506.
- CIKM-2012-ZhuGCL #behaviour #mining #query #recommendation
- More than relevance: high utility query recommendation by mining users’ search behaviors (XZ, JG, XC, YL), pp. 1814–1818.
- ECIR-2012-YanZ #approach #community #recommendation
- A New Approach to Answerer Recommendation in Community Question Answering Services (ZY, JZ), pp. 121–132.
- ICML-2012-PurushothamL #collaboration #matrix #recommendation #social #topic
- Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems (SP, YL), p. 92.
- KDD-2012-0002L #named #recommendation
- RecMax: exploiting recommender systems for fun and profit (AG, LVSL), pp. 1294–1302.
- KDD-2012-BawabMC #personalisation #query #recommendation #topic
- Finding trending local topics in search queries for personalization of a recommendation system (ZAB, GHM, JFC), pp. 397–405.
- KDD-2012-FengW #personalisation #recommendation #social
- Incorporating heterogeneous information for personalized tag recommendation in social tagging systems (WF, JW), pp. 1276–1284.
- KDD-2012-Posse #lessons learnt #network #recommendation #scalability #social
- Key lessons learned building recommender systems for large-scale social networks (CP), p. 587.
- KDD-2012-ShenJ #learning #recommendation #social
- Learning personal + social latent factor model for social recommendation (YS, RJ), pp. 1303–1311.
- KDD-2012-ShiA #dataset #mobile #recommendation
- GetJar mobile application recommendations with very sparse datasets (KS, KA), pp. 204–212.
- KDD-2012-ShiZKYLW #named #network #recommendation #semantics
- HeteRecom: a semantic-based recommendation systemin heterogeneous networks (CS, CZ, XK, PSY, GL, BW), pp. 1552–1555.
- KDD-2012-TangWSS #collaboration #recommendation
- Cross-domain collaboration recommendation (JT, SW, JS, HS), pp. 1285–1293.
- KDD-2012-WuWCT #detection #hybrid #named #recommendation
- HySAD: a semi-supervised hybrid shilling attack detector for trustworthy product recommendation (ZW, JW, JC, DT), pp. 985–993.
- KDD-2012-YangSL #network #online #recommendation #social
- Circle-based recommendation in online social networks (XY, HS, YL), pp. 1267–1275.
- KDIR-2012-BarbieriBCMR #modelling #probability #recommendation #sequence
- Probabilistic Sequence Modeling for Recommender Systems (NB, AB, MC, GM, ER), pp. 75–84.
- KDIR-2012-DinsoreanuMHP #approach #recommendation
- A Unified Approach for Context-sensitive Recommendations (MD, FCM, OLH, RP), pp. 85–94.
- KDIR-2012-FormosoFCC #performance #recommendation #using
- Using Neighborhood Pre-computation to Increase Recommendation Efficiency (VF, DF, FC, VC), pp. 333–335.
- KDIR-2012-FukumotoMM #analysis #collaboration #recommendation #sentiment
- Collaborative Filtering based on Sentiment Analysis of Guest Reviews for Hotel Recommendation (FF, CM, SM), pp. 193–198.
- KDIR-2012-LuongHGH #network #recommendation #social
- Exploiting Social Networks for Publication Venue Recommendations (HPL, TH, SG, KH), pp. 239–245.
- KEOD-2012-AbdelazzizN #ontology #recommendation #using
- Enhancing the Results of Recommender Systems using Implicit Ontology Relations (LA, KN), pp. 5–14.
- KEOD-2012-LuC #clustering #documentation #order #recommendation
- Bringing Order to Legal Documents — An Issue-based Recommendation System Via Cluster Association (QL, JGC), pp. 76–88.
- KMIS-2012-SmirnovKS #collaboration #ontology #recommendation
- Ontology Matching in Context-driven Collaborative Recommending Systems (AVS, AK, NS), pp. 139–144.
- RecSys-2012-AharonKLK #elicitation #personalisation #recommendation
- Dynamic personalized recommendation of comment-eliciting stories (MA, AK, RL, YK), pp. 209–212.
- RecSys-2012-Amatriain #recommendation
- Building industrial-scale real-world recommender systems (XA), pp. 7–8.
- RecSys-2012-AminYSBP #network #recommendation #social
- Social referral: leveraging network connections to deliver recommendations (MSA, BY, SS, AB, CP), pp. 273–276.
- RecSys-2012-AntunesCG #approach #development #recommendation
- An approach to context-based recommendation in software development (BA, JC, PG), pp. 171–178.
- RecSys-2012-BellufXG #case study #online #personalisation #recommendation #scalability
- Case study on the business value impact of personalized recommendations on a large online retailer (TB, LX, RG), pp. 277–280.
- RecSys-2012-BostandjievOH #hybrid #interactive #named #recommendation #visual notation
- TasteWeights: a visual interactive hybrid recommender system (SB, JO, TH), pp. 35–42.
- RecSys-2012-ChhabraR #named #recommendation
- CubeThat: news article recommender (SC, PR), pp. 295–296.
- RecSys-2012-Diaz-AvilesDSN #realtime #recommendation #social
- Real-time top-n recommendation in social streams (EDA, LD, LST, WN), pp. 59–66.
- RecSys-2012-Diaz-AvilesGN #rank #recommendation
- Swarming to rank for recommender systems (EDA, MG, WN), pp. 229–232.
- RecSys-2012-EkstrandR #algorithm #predict #recommendation
- When recommenders fail: predicting recommender failure for algorithm selection and combination (MDE, JR), pp. 233–236.
- RecSys-2012-GertnerLW #enterprise #recommendation
- Recommenders for the enterprise: event, contact, and group (ASG, BL, JW), pp. 299–300.
- RecSys-2012-HaririMB #music #recommendation #topic
- Context-aware music recommendation based on latenttopic sequential patterns (NH, BM, RDB), pp. 131–138.
- RecSys-2012-JiangJFZ #recommendation
- Recommending academic papers via users’ reading purposes (YJ, AJ, YF, DZ), pp. 241–244.
- RecSys-2012-KarimiFNS #learning #matrix #recommendation
- Exploiting the characteristics of matrix factorization for active learning in recommender systems (RK, CF, AN, LST), pp. 317–320.
- RecSys-2012-Knijnenburg #recommendation
- Conducting user experiments in recommender systems (BPK), pp. 3–4.
- RecSys-2012-KnijnenburgBOK #recommendation #social
- Inspectability and control in social recommenders (BPK, SB, JO, AK), pp. 43–50.
- RecSys-2012-KoenigsteinNPS #recommendation
- The Xbox recommender system (NK, NN, UP, NS), pp. 281–284.
- RecSys-2012-Landia #documentation #folksonomy #recommendation
- Utilising document content for tag recommendation in folksonomies (NL), pp. 325–328.
- RecSys-2012-Lempel #challenge #recommendation #web
- Recommendation challenges in web media settings (RL), pp. 205–206.
- RecSys-2012-LeviMDT #recommendation
- Finding a needle in a haystack of reviews: cold start context-based hotel recommender system (AL, OM, CD, NT), pp. 115–122.
- RecSys-2012-LeviMDT12a #recommendation
- Finding a needle in a haystack of reviews: cold start context-based hotel recommender system demo (AL, OM, CD, NT), pp. 305–306.
- RecSys-2012-LiuCCY #named #recommendation
- Enlister: baidu’s recommender system for the biggest chinese Q&A website (QL, TC, JC, DY), pp. 285–288.
- RecSys-2012-LiuXCGXBZ #recommendation
- Influential seed items recommendation (QL, BX, EC, YG, HX, TB, YZ), pp. 245–248.
- RecSys-2012-Manzato #recommendation
- Discovering latent factors from movies genres for enhanced recommendation (MGM), pp. 249–252.
- RecSys-2012-MolingBR #feedback #recommendation
- Optimal radio channel recommendations with explicit and implicit feedback (OM, LB, FR), pp. 75–82.
- RecSys-2012-Ninaus #heuristic #recommendation #requirements #using
- Using group recommendation heuristics for the prioritization of requirements (GN), pp. 329–332.
- RecSys-2012-NingK #linear #recommendation
- Sparse linear methods with side information for top-n recommendations (XN, GK), pp. 155–162.
- RecSys-2012-NoiaMOR #modelling #recommendation #web
- Exploiting the web of data in model-based recommender systems (TDN, RM, VCO, DR), pp. 253–256.
- RecSys-2012-NunesH #bibliography #perspective #recommendation
- Personality-based recommender systems: an overview (MASNN, RH), pp. 5–6.
- RecSys-2012-Parra #recommendation #visualisation
- Beyond lists: studying the effect of different recommendation visualizations (DP), pp. 333–336.
- RecSys-2012-PessemierDM #design #evaluation #recommendation
- Design and evaluation of a group recommender system (TDP, SD, LM), pp. 225–228.
- RecSys-2012-PraweshP #feedback #probability #recommendation
- Probabilistic news recommender systems with feedback (SP, BP), pp. 257–260.
- RecSys-2012-RibeiroLVZ #multi #recommendation
- Pareto-efficient hybridization for multi-objective recommender systems (MTR, AL, AV, NZ), pp. 19–26.
- RecSys-2012-RodriguezPZ #multi #optimisation #recommendation
- Multiple objective optimization in recommender systems (MR, CP, EZ), pp. 11–18.
- RecSys-2012-SaidTH #challenge #recommendation
- The challenge of recommender systems challenges (AS, DT, AH), pp. 9–10.
- RecSys-2012-SklarSH #realtime #recommendation
- Recommending interesting events in real-time with foursquare check-ins (MS, BS, AH), pp. 311–312.
- RecSys-2012-StrickrothP #community #network #quality #recommendation
- High quality recommendations for small communities: the case of a regional parent network (SS, NP), pp. 107–114.
- RecSys-2012-Wakeling #design #library #recommendation
- The user-centered design of a recommender system for a universal library catalogue (SW), pp. 337–340.
- RecSys-2012-WuGRR #microblog #recommendation
- Making recommendations in a microblog to improve the impact of a focal user (SW, LG, WR, LR), pp. 265–268.
- RecSys-2012-YangCZLY #feedback #mining #music #recommendation
- Local implicit feedback mining for music recommendation (DY, TC, WZ, QL, YY), pp. 91–98.
- RecSys-2012-YangSGL #network #on the #recommendation #social #using
- On top-k recommendation using social networks (XY, HS, YG, YL), pp. 67–74.
- RecSys-2012-Zanker #information management #recommendation
- The influence of knowledgeable explanations on users’ perception of a recommender system (MZ), pp. 269–272.
- RecSys-2012-ZelenikB #information management #recommendation
- Reducing the sparsity of contextual information for recommender systems (DZ, MB), pp. 341–344.
- RecSys-2012-ZhangTSWY #approach #image #recommendation #semantics
- A semantic approach to recommending text advertisements for images (WZ, LT, XS, HW, YY), pp. 179–186.
- SEKE-2012-HuiLCDM #e-commerce #empirical #recommendation
- An Empirical Study on Recommendation Methods for Vertical B2C E-commerce (CH, JL, ZC, XD, WM), pp. 139–142.
- SEKE-2012-RadulovicG #network #process #recommendation #semantics
- Semantic Technology Recommendation Based on the Analytic Network Process (FR, RGC), pp. 611–616.
- SEKE-2012-SmithP #design pattern #recommendation
- Dynamically recommending design patterns (SS, DRP), pp. 499–504.
- SIGIR-2012-AdeyanjuSAKRF #adaptation #concept #query #recommendation
- Adaptation of the concept hierarchy model with search logs for query recommendation on intranets (IAA, DS, MDA, UK, ANDR, MF), pp. 5–14.
- SIGIR-2012-AgarwalCEW #online #personalisation #recommendation
- Personalized click shaping through lagrangian duality for online recommendation (DA, BCC, PE, XW), pp. 485–494.
- SIGIR-2012-BonchiPSVV #performance #query #recommendation
- Efficient query recommendations in the long tail via center-piece subgraphs (FB, RP, FS, HV, RV), pp. 345–354.
- SIGIR-2012-ChenCSX #music #named #recommendation
- Pictune: situational music recommendation from geotagged pictures (KC, GC, LS, FX), p. 1011.
- SIGIR-2012-ChenCZJYY #collaboration #personalisation #recommendation #twitter
- Collaborative personalized tweet recommendation (KC, TC, GZ, OJ, EY, YY), pp. 661–670.
- SIGIR-2012-Cleger-TamayoFH #recommendation
- Explaining neighborhood-based recommendations (SCT, JMFL, JFH), pp. 1063–1064.
- SIGIR-2012-MaoLCCS #named #recommendation
- myDJ: recommending karaoke songs from one’s own voice (KM, XL, KC, GC, LS), p. 1009.
- SIGIR-2012-PeraN #named #recommendation
- BReK12: a book recommender for K-12 users (MSP, YKN), pp. 1037–1038.
- SIGIR-2012-QumsiyehN #multi #personalisation #predict #recommendation
- Predicting the ratings of multimedia items for making personalized recommendations (RQ, YKN), pp. 475–484.
- SIGIR-2012-SaidJNPAS #case study #recommendation
- Estimating the magic barrier of recommender systems: a user study (AS, BJJ, SN, TP, SA, CS), pp. 1061–1062.
- SIGIR-2012-ShiKBLHO #named #optimisation #recommendation
- TFMAP: optimizing MAP for top-n context-aware recommendation (YS, AK, LB, ML, AH, NO), pp. 155–164.
- SIGIR-2012-ShiZWLH #adaptation #recommendation
- Adaptive diversification of recommendation results via latent factor portfolio (YS, XZ, JW, ML, AH), pp. 175–184.
- SIGIR-2012-XuJW #community #recommendation
- Dual role model for question recommendation in community question answering (FX, ZJ, BW), pp. 771–780.
- SIGIR-2012-YeLL #approach #generative #recommendation #social
- Exploring social influence for recommendation: a generative model approach (MY, XL, WCL), pp. 671–680.
- MoDELS-2012-MaraeeB #analysis #comparative #constraints #guidelines #modelling #recommendation #uml
- Inter-association Constraints in UML2: Comparative Analysis, Usage Recommendations, and Modeling Guidelines (AM, MB), pp. 302–318.
- MoDELS-2012-MaraeeB #analysis #comparative #constraints #guidelines #modelling #recommendation #uml
- Inter-association Constraints in UML2: Comparative Analysis, Usage Recommendations, and Modeling Guidelines (AM, MB), pp. 302–318.
- OOPSLA-2012-MusluBHEN #analysis #development #ide #recommendation
- Speculative analysis of integrated development environment recommendations (KM, YB, RH, MDE, DN), pp. 669–682.
- RE-2012-Cleland-HuangMMA #recommendation #traceability
- Breaking the big-bang practice of traceability: Pushing timely trace recommendations to project stakeholders (JCH, PM, MM, SA), pp. 231–240.
- SAC-2012-ChenNX #collaboration #recommendation
- A common neighbour based two-way collaborative recommendation method (LC, RN, YX), pp. 214–215.
- SAC-2012-HijikataKN #recommendation #user satisfaction
- The relation between user intervention and user satisfaction for information recommendation (YH, YK, SN), pp. 2002–2007.
- SAC-2012-KuttyCN #modelling #recommendation #using
- A people-to-people recommendation system using tensor space models (SK, LC, RN), pp. 187–192.
- SAC-2012-LageDD #effectiveness #microblog #recommendation #towards
- Towards effective group recommendations for microblogging users (RL, FAD, PD), pp. 923–928.
- SAC-2012-ManzatoG #multi #recommendation
- A multimedia recommender system based on enriched user profiles (MGM, RG), pp. 975–980.
- SAC-2012-MirizziNSR #recommendation #semantics #web
- Web 3.0 in action: Vector Space Model for semantic (movie) Recommendations (RM, TDN, EDS, AR), pp. 403–405.
- SAC-2012-TrabelsiMY #folksonomy #markov #modelling #named #recommendation
- HMM-CARe: Hidden Markov Models for context-aware tag recommendation in folksonomies (CT, BM, SBY), pp. 957–961.
- SAC-2012-WangZHHZWT #mining #mobile #recommendation
- Context-aware role mining for mobile service recommendation (JW, CZ, CH, LH, LZ, RKW, JT), pp. 173–178.
- FSE-2012-Murphy-HillJM #developer #development #recommendation
- Improving software developers’ fluency by recommending development environment commands (ERMH, RJ, GCM), p. 42.
- ICSE-2012-HuangLXW #mining #recommendation #repository #xml
- Mining application repository to recommend XML configuration snippets (SH, YL, YX, WW), pp. 1451–1452.
- ICSE-2012-McMillanHPCM #agile #prototype #recommendation #source code
- Recommending source code for use in rapid software prototypes (CM, NH, DP, JCH, BM), pp. 848–858.
- ICSE-2012-MusluBHEN #ide #recommendation
- Improving IDE recommendations by considering global implications of existing recommendations (KM, YB, RH, MDE, DN), pp. 1349–1352.
- ICSE-2012-ZhangYZFZZO #api #automation #parametricity #recommendation
- Automatic parameter recommendation for practical API usage (CZ, JY, YZ, JF, XZ, JZ, PO), pp. 826–836.
- CBSE-2011-MeloP #component #framework #open source #recommendation
- A component-based open-source framework for general-purpose recommender systems (FMM, ÁRPJ), pp. 67–72.
- ASE-2011-LozanoKM #named #recommendation #search-based #source code
- Mendel: Source code recommendation based on a genetic metaphor (AL, AK, KM), pp. 384–387.
- ASE-2011-WangFWLXY #api #effectiveness #java #named #recommendation #web
- APIExample: An effective web search based usage example recommendation system for java APIs (LW, LF, LW, GL, BX, FY), pp. 592–595.
- DocEng-2011-ChidlovskiiB #learning #metric #network #recommendation #social
- Local metric learning for tag recommendation in social networks (BC, AB), pp. 205–208.
- SIGMOD-2011-ChandramouliLEM #named #realtime #recommendation
- StreamRec: a real-time recommender system (BC, JJL, AE, MFM), pp. 1243–1246.
- VLDB-2011-LevandoskiELEMR #architecture #benchmark #metric #named #performance #recommendation
- RecBench: Benchmarks for Evaluating Performance of Recommender System Architectures (JJL, MDE, ML, AE, MFM, JR), pp. 911–920.
- VLDB-2011-MachanavajjhalaKS #personalisation #question #recommendation #social
- Personalized Social Recommendations — Accurate or Private? (AM, AK, ADS), pp. 440–450.
- ITiCSE-2011-HarrachA #collaboration #learning #optimisation #process #recommendation #using
- Optimizing collaborative learning processes by using recommendation systems (SH, MA), p. 389.
- ICSM-2011-LeeK #clustering #recommendation
- Clustering and recommending collections of code relevant to tasks (SL, SK), pp. 536–539.
- WCRE-2011-SurianLLTLF #collaboration #developer #network #people #recommendation
- Recommending People in Developers’ Collaboration Network (DS, NL, DL, HT, EPL, CF), pp. 379–388.
- CHI-2011-ChenNC #online #recommendation #social
- Speak little and well: recommending conversations in online social streams (JC, RN, EHhC), pp. 217–226.
- CHI-2011-John #design #modelling #performance #predict #recommendation #user interface #using
- Using predictive human performance models to inspire and support UI design recommendations (BEJ), pp. 983–986.
- CHI-2011-SchwindBH #recommendation
- I will do it, but i don’t like it: user reactions to preference-inconsistent recommendations (CS, JB, FWH), pp. 349–352.
- CSCW-2011-GuyURPJ #enterprise #recommendation
- Do you want to know?: recommending strangers in the enterprise (IG, SU, IR, AP, MJ), pp. 285–294.
- DUXU-v1-2011-BaltrunasLPR #mobile #recommendation
- Context-Aware Places of Interest Recommendations for Mobile Users (LB, BL, SP, FR), pp. 531–540.
- HCI-DDA-2011-KogaT #recommendation #topic #twitter #using
- Developing a User Recommendation Engine on Twitter Using Estimated Latent Topics (HK, TT), pp. 461–470.
- HCI-ITE-2011-KuramotoYMT #interactive #multi #recommendation
- Recommendation System Based on Interaction with Multiple Agents for Users with Vague Intention (IK, AY, MM, YT), pp. 351–357.
- HCI-MIIE-2011-AiharaKT #behaviour #cost analysis #recommendation
- Behavioral Cost-Based Recommendation Model for Wanderers in Town (KA, HK, HT), pp. 271–279.
- HCI-UA-2011-OlivierWP #game studies #music #named #recommendation
- MusicTagger: Exploiting User Generated Game Data for Music Recommendation (HO, MW, NP), pp. 678–687.
- HIMI-v1-2011-BreyerNSBK #personalisation #recommendation
- A Comprehensive Reference Model for Personalized Recommender Systems (MB, KN, CS, DB, AK), pp. 528–537.
- HIMI-v1-2011-KoCECCKH #recommendation
- A Smart Movie Recommendation System (SKK, SMC, HSE, JWC, HC, LK, YSH), pp. 558–566.
- OCSC-2011-PujariK #approach #machine learning #predict #recommendation
- A Supervised Machine Learning Link Prediction Approach for Tag Recommendation (MP, RK), pp. 336–344.
- OCSC-2011-PuseyM #collaboration #design #learning #recommendation #wiki
- Assessments in Large- and Small-Scale Wiki Collaborative Learning Environments: Recommendations for Educators and Wiki Designers (PP, GM), pp. 60–68.
- ICEIS-v2-2011-ChenGC #enterprise #recommendation
- Enterprise Knowledge Practice and Recommendation based on HOTP Model (BC, YG, DC), pp. 444–450.
- ICEIS-v2-2011-WangS #education #information management #recommendation
- Application of Recommender Engine in Academic Degree and Postgraduate Education Knowledge Management System (XW, HS), pp. 455–458.
- CIKM-2011-BoimMN #collaboration #recommendation #refinement
- Diversification and refinement in collaborative filtering recommender (RB, TM, SN), pp. 739–744.
- CIKM-2011-DongBHRC #optimisation #personalisation #recommendation
- User action interpretation for personalized content optimization in recommender systems (AD, JB, XH, SR, YC), pp. 2129–2132.
- CIKM-2011-DraidiPPV #named #recommendation
- P2Prec: a social-based P2P recommendation system (FD, EP, DP, GV), pp. 2593–2596.
- CIKM-2011-DrosouP #database #named #recommendation
- ReDRIVE: result-driven database exploration through recommendations (MD, EP), pp. 1547–1552.
- CIKM-2011-LiLSG #community #named #online #performance #privacy #recommendation #social
- YANA: an efficient privacy-preserving recommender system for online social communities (DL, QL, LS, NG), pp. 2269–2272.
- CIKM-2011-LuHSY #recommendation
- Recommending citations with translation model (YL, JH, DS, HY), pp. 2017–2020.
- CIKM-2011-MoghaddamJE #bibliography #online #personalisation #predict #quality #recommendation
- Review recommendation: personalized prediction of the quality of online reviews (SM, MJ, ME), pp. 2249–2252.
- CIKM-2011-PeraN #personalisation #recommendation
- A personalized recommendation system on scholarly publications (MSP, YKN), pp. 2133–2136.
- CIKM-2011-SeguelaS #hybrid #recommendation
- A semi-supervised hybrid system to enhance the recommendation of channels in terms of campaign roi (JS, GS), pp. 2265–2268.
- CIKM-2011-ShiehLW #recommendation
- Recommendation in the end-to-end encrypted domain (JRS, CYL, JLW), pp. 915–924.
- CIKM-2011-SongQF #recommendation #visualisation
- Hierarchical tag visualization and application for tag recommendations (YS, BQ, UF), pp. 1331–1340.
- CIKM-2011-WangHLCH #learning #recommendation
- Learning to recommend questions based on public interest (JW, XH, ZL, WHC, BH), pp. 2029–2032.
- CIKM-2011-YanGC #higher-order #learning #query #recommendation
- Context-aware query recommendation by learning high-order relation in query logs (XY, JG, XC), pp. 2073–2076.
- ECIR-2011-ChilukaAP #approach #predict #recommendation #scalability
- A Link Prediction Approach to Recommendations in Large-Scale User-Generated Content Systems (NC, NA, JAP), pp. 189–200.
- ECIR-2011-HannonMS #recommendation #twitter
- Finding Useful Users on Twitter: Twittomender the Followee Recommender (JH, KM, BS), pp. 784–787.
- ECIR-2011-MoshfeghiJ #collaboration #recommendation
- Role of Emotional Features in Collaborative Recommendation (YM, JMJ), pp. 738–742.
- ECIR-2011-PhelanMBS #recommendation #twitter #using
- Terms of a Feather: Content-Based News Recommendation and Discovery Using Twitter (OP, KM, MB, BS), pp. 448–459.
- ECIR-2011-ShiLH11a #how #question #recommendation #trust
- How Far Are We in Trust-Aware Recommendation? (YS, ML, AH), pp. 704–707.
- ECIR-2011-WartenaW #recommendation #topic
- Improving Tag-Based Recommendation by Topic Diversification (CW, MW), pp. 43–54.
- KDD-2011-AgarwalCL #locality #modelling #multi #recommendation
- Localized factor models for multi-context recommendation (DA, BCC, BL), pp. 609–617.
- KDD-2011-DrorKMS #exclamation #recommendation
- I want to answer; who has a question?: Yahoo! answers recommender system (GD, YK, YM, IS), pp. 1109–1117.
- KDD-2011-GeLXTC #cost analysis #recommendation
- Cost-aware travel tour recommendation (YG, QL, HX, AT, JC), pp. 983–991.
- KDD-2011-PradelSDGRUFD #case study #recommendation
- A case study in a recommender system based on purchase data (BP, SS, JD, SG, CR, NU, FFS, FDJ), pp. 377–385.
- KDD-2011-WangB #collaboration #modelling #recommendation #topic
- Collaborative topic modeling for recommending scientific articles (CW, DMB), pp. 448–456.
- KEOD-2011-HusakovaC #multi #ontology #recommendation #simulation
- Exploitation of Ontology-based Recommendation System with Multi-agent Simulations (MH, PC), pp. 433–436.
- KMIS-2011-Borchardt #recommendation #towards
- Towards a Value-oriented KMS Recommendation for SME (UB), pp. 347–350.
- RecSys-2011-Alam #clustering #recommendation #web
- Intelligent web usage clustering based recommender system (SA), pp. 367–370.
- RecSys-2011-BaltrunasLR #matrix #recommendation
- Matrix factorization techniques for context aware recommendation (LB, BL, FR), pp. 301–304.
- RecSys-2011-BarbieriCMO #approach #modelling #recommendation
- Modeling item selection and relevance for accurate recommendations: a bayesian approach (NB, GC, GM, RO), pp. 21–28.
- RecSys-2011-Bellogin #performance #predict #recommendation
- Predicting performance in recommender systems (AB), pp. 371–374.
- RecSys-2011-BelloginCC #algorithm #comparison #evaluation #recommendation
- Precision-oriented evaluation of recommender systems: an algorithmic comparison (AB, PC, IC), pp. 333–336.
- RecSys-2011-BourkeMS #people #recommendation #social
- Power to the people: exploring neighbourhood formations in social recommender system (SB, KM, BS), pp. 337–340.
- RecSys-2011-BraunhoferKR #mobile #music #recommendation
- Recommending music for places of interest in a mobile travel guide (MB, MK, FR), pp. 253–256.
- RecSys-2011-CamposDS #evaluation #matrix #predict #recommendation #testing #towards
- Towards a more realistic evaluation: testing the ability to predict future tastes of matrix factorization-based recommenders (PGC, FD, MASM), pp. 309–312.
- RecSys-2011-CelmaL #music #recommendation #revisited
- Music recommendation and discovery revisited (ÒC, PL), pp. 7–8.
- RecSys-2011-Chen #design #interactive #interface #recommendation #social
- Interface and interaction design for group and social recommender systems (YC), pp. 363–366.
- RecSys-2011-DalyG #effectiveness #recommendation #social #using
- Effective event discovery: using location and social information for scoping event recommendations (EMD, WG), pp. 277–280.
- RecSys-2011-DayanKBRSASF #benchmark #framework #metric #recommendation
- Recommenders benchmark framework (AD, GK, NB, LR, BS, AA, RS, RF), pp. 353–354.
- RecSys-2011-EkstrandLKR #ecosystem #recommendation #research
- Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit (MDE, ML, JAK, JR), pp. 133–140.
- RecSys-2011-EkstrandLKR11a #composition #framework #named #recommendation
- LensKit: a modular recommender framework (MDE, ML, JK, JR), pp. 349–350.
- RecSys-2011-Faridani #analysis #canonical #correlation #recommendation #sentiment #using
- Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search (SF), pp. 355–358.
- RecSys-2011-ForbesZ #matrix #recommendation
- Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation (PF, MZ), pp. 261–264.
- RecSys-2011-GantnerRFS #library #named #recommendation
- MyMediaLite: a free recommender system library (ZG, SR, CF, LST), pp. 305–308.
- RecSys-2011-GorgoglionePT #behaviour #recommendation #trust
- The effect of context-aware recommendations on customer purchasing behavior and trust (MG, UP, AT), pp. 85–92.
- RecSys-2011-GuzziRB #interactive #multi #recommendation
- Interactive multi-party critiquing for group recommendation (FG, FR, RDB), pp. 265–268.
- RecSys-2011-Hurley #recommendation #robust
- Robustness of recommender systems (NJH), pp. 9–10.
- RecSys-2011-JamaliHE #network #probability #rating #recommendation #social
- A generalized stochastic block model for recommendation in social rating networks (MJ, TH, ME), pp. 53–60.
- RecSys-2011-KimE #personalisation #rank #recommendation
- Personalized PageRank vectors for tag recommendations: inside FolkRank (HNK, AES), pp. 45–52.
- RecSys-2011-KnijnenburgRW #how #interactive #recommendation
- Each to his own: how different users call for different interaction methods in recommender systems (BPK, NJMR, MCW), pp. 141–148.
- RecSys-2011-KnijnenburgWK #evaluation #recommendation
- A pragmatic procedure to support the user-centric evaluation of recommender systems (BPK, MCW, AK), pp. 321–324.
- RecSys-2011-KoenigsteinDK #exclamation #modelling #music #recommendation #taxonomy
- Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy (NK, GD, YK), pp. 165–172.
- RecSys-2011-LeeL #analysis #behaviour #music #recommendation
- My head is your tail: applying link analysis on long-tailed music listening behavior for music recommendation (KL, KL), pp. 213–220.
- RecSys-2011-LeeSKLL #graph #multi #random #ranking #recommendation
- Random walk based entity ranking on graph for multidimensional recommendation (SL, SiS, MK, DL, SgL), pp. 93–100.
- RecSys-2011-LiuMLY #elicitation #rating #recommendation
- Wisdom of the better few: cold start recommendation via representative based rating elicitation (NNL, XM, CL, QY), pp. 37–44.
- RecSys-2011-LiuMX #multi #recommendation
- Multi-criteria service recommendation based on user criteria preferences (LL, NM, DLX), pp. 77–84.
- RecSys-2011-LiZL #integration #named #personalisation #recommendation
- LOGO: a long-short user interest integration in personalized news recommendation (LL, LZ, TL), pp. 317–320.
- RecSys-2011-Makrehchi #learning #recommendation #social #topic
- Social link recommendation by learning hidden topics (MM), pp. 189–196.
- RecSys-2011-PaparrizosCG #recommendation
- Machine learned job recommendation (IKP, BBC, AG), pp. 325–328.
- RecSys-2011-PizzatoS #collaboration #people #probability #recommendation
- Stochastic matching and collaborative filtering to recommend people to people (LASP, CS), pp. 341–344.
- RecSys-2011-PraweshP #recommendation
- The “top N” news recommender: count distortion and manipulation resistance (SP, BP), pp. 237–244.
- RecSys-2011-PuCH #evaluation #framework #recommendation
- A user-centric evaluation framework for recommender systems (PP, LC, RH), pp. 157–164.
- RecSys-2011-SabinC #named #online #recommendation
- myMicSound: an online sound-based microphone recommendation system (ATS, CLC), pp. 351–352.
- RecSys-2011-SaidBLH #challenge #recommendation
- Challenge on context-aware movie recommendation: CAMRa2011 (AS, SB, EWDL, JH), pp. 385–386.
- RecSys-2011-SekoYMM #behaviour #recommendation #representation #using
- Group recommendation using feature space representing behavioral tendency and power balance among members (SS, TY, MM, SyM), pp. 101–108.
- RecSys-2011-Steck #recommendation
- Item popularity and recommendation accuracy (HS), pp. 125–132.
- RecSys-2011-Sundaresan #recommendation
- Recommender systems at the long tail (NS), pp. 1–6.
- RecSys-2011-SymeonidisTM #multi #network #predict #rating #recommendation #social
- Product recommendation and rating prediction based on multi-modal social networks (PS, ET, YM), pp. 61–68.
- RecSys-2011-TayebiJEGF #named #recommendation
- CrimeWalker: a recommendation model for suspect investigation (MAT, MJ, ME, UG, RF), pp. 173–180.
- RecSys-2011-Tschersich #design #guidelines #mobile #recommendation
- Design guidelines for mobile group recommender systems to handle inaccurate or missing location data (MT), pp. 359–362.
- RecSys-2011-Tunkelang #recommendation
- Recommendations as a conversation with the user (DT), pp. 11–12.
- RecSys-2011-VargasC #metric #rank #recommendation
- Rank and relevance in novelty and diversity metrics for recommender systems (SV, PC), pp. 109–116.
- RecSys-2011-WangSS #e-commerce #recommendation
- Utilizing related products for post-purchase recommendation in e-commerce (JW, BS, NS), pp. 329–332.
- RecSys-2011-WoerndlHBG #mobile #recommendation
- A model for proactivity in mobile, context-aware recommender systems (WW, JH, RB, DGV), pp. 273–276.
- RecSys-2011-WuRR #monitoring #recommendation #social #social media
- Recommendations in social media for brand monitoring (SW, WR, LR), pp. 345–348.
- RecSys-2011-XinS #matrix #multi #probability #recommendation
- Multi-value probabilistic matrix factorization for IP-TV recommendations (YX, HS), pp. 221–228.
- RecSys-2011-YuanCZ #recommendation #social
- Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation (QY, LC, SZ), pp. 245–252.
- RecSys-2011-YuPL #adaptation #recommendation #social
- Adaptive social similarities for recommender systems (LY, RP, ZL), pp. 257–260.
- RecSys-2011-Zhang #recommendation
- Anchoring effects of recommender systems (JZ), pp. 375–378.
- SEKE-2011-CaiZWXS #approach #component #recommendation
- Recommending Component by Citation: A Semi-supervised Approach for Determination (SC, YZ, LW, BX, WS), pp. 489–494.
- SEKE-2011-ZhangSPCM #architecture #design #quality #recommendation #towards
- Towards Quality Based Solution Recommendation in Decision-Centric Architecture Design (LZ, YS, YP, XC, HM), pp. 776–781.
- SIGIR-2011-BelemMPAG #multi #recommendation
- Associative tag recommendation exploiting multiple textual features (FB, EFM, TP, JMA, MAG), pp. 1033–1042.
- SIGIR-2011-BelloginCC #analysis #hybrid #network #recommendation #self #social
- Self-adjusting hybrid recommenders based on social network analysis (AB, PC, IC), pp. 1147–1148.
- SIGIR-2011-ChenC #recommendation #web
- Recommending ephemeral items at web scale (YC, JFC), pp. 1013–1022.
- SIGIR-2011-LeungLL #clustering #collaboration #framework #named #recommendation
- CLR: a collaborative location recommendation framework based on co-clustering (KWTL, DLL, WCL), pp. 305–314.
- SIGIR-2011-LiDS #concept #recommendation #semantics #using
- Semantic tag recommendation using concept model (CL, AD, AS), pp. 1159–1160.
- SIGIR-2011-LiLS #recommendation #social
- Exploiting endorsement information and social influence for item recommendation (CTL, SDL, MKS), pp. 1131–1132.
- SIGIR-2011-LinDW #image #recommendation
- Image annotation based on recommendation model (ZL, GD, JW), pp. 1097–1098.
- SIGIR-2011-LiWLKP #named #personalisation #recommendation #scalability
- SCENE: a scalable two-stage personalized news recommendation system (LL, DW, TL, DK, BP), pp. 125–134.
- SIGIR-2011-MaLKL #modelling #probability #recommendation #web
- Probabilistic factor models for web site recommendation (HM, CL, IK, MRL), pp. 265–274.
- SIGIR-2011-RendleGFS #performance #recommendation
- Fast context-aware recommendations with factorization machines (SR, ZG, CF, LST), pp. 635–644.
- SIGIR-2011-RicciGBAGP #named #quality #recommendation #web
- GreenMeter: a tool for assessing the quality and recommending tags for web 2.0 applications (SMRR, DAG, FMB, JMA, MAG, ROP), pp. 1279–1280.
- SIGIR-2011-ShiYGN #machine learning #network #recommendation #scalability #social
- A large scale machine learning system for recommending heterogeneous content in social networks (YS, DY, AG, SN), pp. 1337–1338.
- SIGIR-2011-TangWB #recommendation
- Recommending interesting activity-related local entities (JT, RWW, PB), pp. 1161–1162.
- SIGIR-2011-VargasCV #recommendation
- Intent-oriented diversity in recommender systems (SV, PC, DV), pp. 1211–1212.
- SIGIR-2011-Wang #comprehension #information management #recommendation #using
- Understanding and using contextual information in recommender systems (LW), pp. 1329–1330.
- SIGIR-2011-WangZ #e-commerce #recommendation
- Utilizing marginal net utility for recommendation in e-commerce (JW, YZ), pp. 1003–1012.
- SIGIR-2011-WeiHL #analysis #framework #recommendation #semantics
- A unified framework for recommendations based on quaternary semantic analysis (WC, WH, MLL), pp. 1023–1032.
- SIGIR-2011-YangLSZZ #collaboration #learning #recommendation #using
- Collaborative competitive filtering: learning recommender using context of user choice (SHY, BL, AJS, HZ, ZZ), pp. 295–304.
- SIGIR-2011-YeYLL #collaboration #recommendation
- Exploiting geographical influence for collaborative point-of-interest recommendation (MY, PY, WCL, DLL), pp. 325–334.
- SIGIR-2011-ZhouYZ #functional #matrix #recommendation
- Functional matrix factorizations for cold-start recommendation (KZ, SHY, HZ), pp. 315–324.
- ECOOP-2011-Duala-EkokoR #api #recommendation #using
- Using Structure-Based Recommendations to Facilitate Discoverability in APIs (EDE, MPR), pp. 79–104.
- ESEC-FSE-2011-ZhengZL #api #recommendation #using #web
- Cross-library API recommendation using web search engines (WZ, QZ, MRL), pp. 480–483.
- ICSE-2011-DumitruGHCMCM #mining #on-demand #recommendation
- On-demand feature recommendations derived from mining public product descriptions (HD, MG, NH, JCH, BM, CCH, MM), pp. 181–190.
- ICSE-2011-NguyenNNN #evolution #recommendation
- Aspect recommendation for evolving software (TTN, HVN, HAN, TNN), pp. 361–370.
- ASE-2010-ZhengZLX #generative #random #recommendation #sequence #testing
- Random unit-test generation with MUT-aware sequence recommendation (WZ, QZ, MRL, TX), pp. 293–296.
- HT-2010-GasslerZTS #named #recommendation #using
- SnoopyDB: narrowing the gap between structured and unstructured information using recommendations (WG, EZ, MT, GS), pp. 271–272.
- HT-2010-GuoJ #collaboration #personalisation #recommendation #topic
- Topic-based personalized recommendation for collaborative tagging system (YG, JBDJ), pp. 61–66.
- HT-2010-LiangXLNT #personalisation #recommendation
- Connecting users and items with weighted tags for personalized item recommendations (HL, YX, YL, RN, XT), pp. 51–60.
- HT-2010-LiuFZ #recommendation #social
- Speak the same language with your friends: augmenting tag recommenders with social relations (KL, BF, WZ), pp. 45–50.
- SIGMOD-2010-MoriczDB #named #recommendation
- PYMK: friend recommendation at myspace (MM, YD, MB), pp. 999–1002.
- SIGMOD-2010-ParameswaranKBG #algorithm #mining #named #precedence #recommendation
- Recsplorer: recommendation algorithms based on precedence mining (AGP, GK, BB, HGM), pp. 87–98.
- VLDB-2010-AkbarnejadCEKMOPV #recommendation #sql
- SQL QueRIE Recommendations (JA, GC, ME, SK, SM, DO, NP, JSVV), pp. 1597–1600.
- CSEET-2010-GarousiM #education #recommendation #testing
- Current State of the Software Testing Education in North American Academia and Some Recommendations for the New Educators (VG, AM), pp. 89–96.
- CHI-2010-ChenNNBC #recommendation #twitter
- Short and tweet: experiments on recommending content from information streams (JC, RN, LN, MSB, EHC), pp. 1185–1194.
- CHI-2010-WalshG #game studies #named #recommendation
- Curator: a game with a purpose for collection recommendation (GW, JG), pp. 2079–2082.
- CIKM-2010-BelemMAGP #metric #quality #recommendation #web
- Exploiting co-occurrence and information quality metrics to recommend tags in web 2.0 applications (FMB, EFM, JMdA, MAG, GLP), pp. 1793–1796.
- CIKM-2010-CaiLLTL #recommendation
- Recommendation based on object typicality (YC, HfL, QL, JT, JL), pp. 1529–1532.
- CIKM-2010-Garcia-AlvaradoCO #query #recommendation
- OLAP-based query recommendation (CGA, ZC, CO), pp. 1353–1356.
- CIKM-2010-GemmellSMB #hybrid #recommendation #social
- Hybrid tag recommendation for social annotation systems (JG, TS, BM, RDB), pp. 829–838.
- CIKM-2010-GolbandiKL #on the #recommendation
- On bootstrapping recommender systems (NG, YK, RL), pp. 1805–1808.
- CIKM-2010-GuoCXS #approach #query #recommendation #social
- A structured approach to query recommendation with social annotation data (JG, XC, GX, HS), pp. 619–628.
- CIKM-2010-KurashimaIIF #recommendation #using
- Travel route recommendation using geotags in photo sharing sites (TK, TI, GI, KF), pp. 579–588.
- CIKM-2010-LiangXLN #folksonomy #personalisation #recommendation #taxonomy
- Personalized recommender system based on item taxonomy and folksonomy (HL, YX, YL, RN), pp. 1641–1644.
- CIKM-2010-MinkovCLTJ #collaboration #recommendation
- Collaborative future event recommendation (EM, BC, JL, SJT, TSJ), pp. 819–828.
- CIKM-2010-NakatsujiFTUFI #music #novel #recommendation
- Classical music for rock fans?: novel recommendations for expanding user interests (MN, YF, AT, TU, KF, TI), pp. 949–958.
- CIKM-2010-ParameswaranGU #recommendation
- Evaluating, combining and generalizing recommendations with prerequisites (AGP, HGM, JDU), pp. 919–928.
- CIKM-2010-PengZZW #collaboration #recommendation #social
- Collaborative filtering in social tagging systems based on joint item-tag recommendations (JP, DDZ, HZ, FYW), pp. 809–818.
- CIKM-2010-ShavittWW #peer-to-peer #recommendation #using
- Building recommendation systems using peer-to-peer shared content (YS, EW, UW), pp. 1457–1460.
- CIKM-2010-WartenaSW #keyword #recommendation
- Selecting keywords for content based recommendation (CW, WS, MW), pp. 1533–1536.
- CIKM-2010-ZhangZ #modelling #personalisation #recommendation
- Discriminative factored prior models for personalized content-based recommendation (LZ, YZ), pp. 1569–1572.
- CIKM-2010-ZhaoBCGWZ #concurrent #learning #online #recommendation #thread
- Learning a user-thread alignment manifold for thread recommendation in online forum (JZ, JB, CC, ZG, CW, CZ), pp. 559–568.
- ECIR-2010-RedpathGMC #collaboration #recommendation
- Collaborative Filtering: The Aim of Recommender Systems and the Significance of User Ratings (JR, DHG, SIM, LC), pp. 394–406.
- KDD-2010-AgarwalCE #learning #online #performance #recommendation
- Fast online learning through offline initialization for time-sensitive recommendation (DA, BCC, PE), pp. 703–712.
- KDD-2010-GeXTXGP #energy #mobile #recommendation
- An energy-efficient mobile recommender system (YG, HX, AT, KX, MG, MJP), pp. 899–908.
- KDD-2010-JahrerTL #predict #recommendation
- Combining predictions for accurate recommender systems (MJ, AT, RAL), pp. 693–702.
- KDD-2010-Steck #random #recommendation #testing
- Training and testing of recommender systems on data missing not at random (HS), pp. 713–722.
- KDD-2010-XiangYZCZYS #graph #recommendation
- Temporal recommendation on graphs via long- and short-term preference fusion (LX, QY, SZ, LC, XZ, QY, JS), pp. 723–732.
- KDIR-2010-ArmanoV #recommendation
- A Unifying View of Contextual Advertising and Recommender Systems (GA, EV), pp. 463–466.
- KDIR-2010-Quinteiro-GonzalezMHLMP #framework #recommendation
- Recommendation System in an Audiovisual Delivery Platform (JMQG, EMJ, PHM, ALR, LMM, ASdP), pp. 379–382.
- RecSys-2010-AdomaviciusZ #algorithm #on the #recommendation
- On the stability of recommendation algorithms (GA, JZ), pp. 47–54.
- RecSys-2010-AlbanesedMPP #modelling #problem #recommendation #social
- Modeling recommendation as a social choice problem (MA, Ad, VM, FP, AP), pp. 329–332.
- RecSys-2010-AydayF #online #recommendation
- A belief propagation based recommender system for online services (EA, FF), pp. 217–220.
- RecSys-2010-Baeza-Yates #predict #query #recommendation
- Query intent prediction and recommendation (RABY), pp. 5–6.
- RecSys-2010-BaglioniBBCFVP #lightweight #mobile #privacy #recommendation
- A lightweight privacy preserving SMS-based recommendation system for mobile users (EB, LB, LB, UMC, LF, AV, GP), pp. 191–198.
- RecSys-2010-Balakrishnan #on-demand #recommendation
- On-demand set-based recommendations (SB), pp. 313–316.
- RecSys-2010-BaltrunasMR #collaboration #rank #recommendation
- Group recommendations with rank aggregation and collaborative filtering (LB, TM, FR), pp. 119–126.
- RecSys-2010-BarrioR #collaboration #recommendation
- Geolocated movie recommendations based on expert collaborative filtering (JBB, XAR), pp. 347–348.
- RecSys-2010-BenchettaraKR #approach #collaboration #machine learning #predict #recommendation
- A supervised machine learning link prediction approach for academic collaboration recommendation (NB, RK, CR), pp. 253–256.
- RecSys-2010-BerkovskyF #analysis #recommendation
- Group-based recipe recommendations: analysis of data aggregation strategies (SB, JF), pp. 111–118.
- RecSys-2010-BerkovskyFCB #algorithm #game studies #process #recommendation
- Recommender algorithms in activity motivating games (SB, JF, MC, DB), pp. 175–182.
- RecSys-2010-BollenKWG #comprehension #recommendation
- Understanding choice overload in recommender systems (DGFMB, BPK, MCW, MPG), pp. 63–70.
- RecSys-2010-Burke #algorithm #recommendation
- Evaluating the dynamic properties of recommendation algorithms (RDB), pp. 225–228.
- RecSys-2010-CantadorBV #recommendation #social
- Content-based recommendation in social tagging systems (IC, AB, DV), pp. 237–240.
- RecSys-2010-CastagnosJP #recommendation
- Eye-tracking product recommenders’ usage (SC, NJ, PP), pp. 29–36.
- RecSys-2010-CebrianPVA #music #recommendation
- Music recommendations with temporal context awareness (TC, MP, PV, XA), pp. 349–352.
- RecSys-2010-CremonesiKT #algorithm #performance #recommendation
- Performance of recommender algorithms on top-n recommendation tasks (PC, YK, RT), pp. 39–46.
- RecSys-2010-DalyGM #network #recommendation #social
- The network effects of recommending social connections (EMD, WG, DRM), pp. 301–304.
- RecSys-2010-DavidsonLLNVGGHLLS #recommendation #video
- The YouTube video recommendation system (JD, BL, JL, PN, TVV, UG, SG, YH, ML, BL, DS), pp. 293–296.
- RecSys-2010-DeryKRS #nondeterminism #recommendation
- Iterative voting under uncertainty for group recommender systems (LND, MK, LR, BS), pp. 265–268.
- RecSys-2010-EsparzaOS #on the #realtime #recommendation #web
- On the real-time web as a source of recommendation knowledge (SGE, MPO, BS), pp. 305–308.
- RecSys-2010-FreyneBDG #network #recommendation #social
- Social networking feeds: recommending items of interest (JF, SB, EMD, WG), pp. 277–280.
- RecSys-2010-GedikliJ #rating #recommendation
- Recommending based on rating frequencies (FG, DJ), pp. 233–236.
- RecSys-2010-GeDJ #recommendation
- Beyond accuracy: evaluating recommender systems by coverage and serendipity (MG, CDB, DJ), pp. 257–260.
- RecSys-2010-GuyJAMNNS #industrial #perspective #recommendation
- Will recommenders kill search?: recommender systems — an industry perspective (IG, AJ, PA, PM, PN, CN, HS), pp. 7–12.
- RecSys-2010-HammerKA #named #recommendation
- MED-StyleR: METABO diabetes-lifestyle recommender (SH, JK, EA), pp. 285–288.
- RecSys-2010-HannonBS #collaboration #recommendation #twitter #using
- Recommending twitter users to follow using content and collaborative filtering approaches (JH, MB, BS), pp. 199–206.
- RecSys-2010-Hu #design #recommendation
- Design and user issues in personality-based recommender systems (RH), pp. 357–360.
- RecSys-2010-ImK #personalisation #recommendation
- Personalizing the settings for Cf-based recommender systems (II, BHK), pp. 245–248.
- RecSys-2010-JamaliE #matrix #network #recommendation #social #trust
- A matrix factorization technique with trust propagation for recommendation in social networks (MJ, ME), pp. 135–142.
- RecSys-2010-JawaheerSK #feedback #music #online #recommendation
- Characterisation of explicit feedback in an online music recommendation service (GJ, MS, PK), pp. 317–320.
- RecSys-2010-KaragiannidisAZV #framework #named #recommendation
- Hydra: an open framework for virtual-fusion of recommendation filters (SK, SA, CZ, AV), pp. 229–232.
- RecSys-2010-KaratzoglouABO #collaboration #multi #recommendation
- Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering (AK, XA, LB, NO), pp. 79–86.
- RecSys-2010-LappasG #interactive #network #recommendation #social
- Interactive recommendations in social endorsement networks (TL, DG), pp. 127–134.
- RecSys-2010-LipczakM #learning #performance #recommendation
- Learning in efficient tag recommendation (ML, EEM), pp. 167–174.
- RecSys-2010-MarxHM #algorithm #comprehension #hybrid #recommendation
- Increasing consumers’ understanding of recommender results: a preference-based hybrid algorithm with strong explanatory power (PM, THT, AM), pp. 297–300.
- RecSys-2010-MoldvayBFS #clustering #graph #named #recommendation #semantics #social
- Tagmantic: a social recommender service based on semantic tag graphs and tag clusters (JM, IB, AF, MS), pp. 345–346.
- RecSys-2010-Musto #modelling #recommendation
- Enhanced vector space models for content-based recommender systems (CM), pp. 361–364.
- RecSys-2010-PizzatoRCKK #named #online #recommendation
- RECON: a reciprocal recommender for online dating (LASP, TR, TC, IK, JK), pp. 207–214.
- RecSys-2010-PizzatoRCKYK #online #recommendation
- Reciprocal recommender system for online dating (LASP, TR, TC, IK, KY, JK), pp. 353–354.
- RecSys-2010-Said #hybrid #identification #recommendation
- Identifying and utilizing contextual data in hybrid recommender systems (AS), pp. 365–368.
- RecSys-2010-SandholmUAH #recommendation
- Global budgets for local recommendations (TS, HU, CA, BAH), pp. 13–20.
- RecSys-2010-Schirru #enterprise #recommendation #social #social media #topic
- Topic-based recommendations in enterprise social media sharing platforms (RS), pp. 369–372.
- RecSys-2010-Servan-Schreiber #recommendation
- Recommendation analytics: the business view, and the business case (ESS), pp. 215–216.
- RecSys-2010-Shani #recommendation #tutorial
- Tutorial on evaluating recommender systems (GS), p. 1.
- RecSys-2010-VasukiNLD #network #recommendation #using
- Affiliation recommendation using auxiliary networks (VV, NN, ZL, ISD), pp. 103–110.
- RecSys-2010-XieLW #recommendation
- Breaking out of the box of recommendations: from items to packages (MX, LVSL, PTW), pp. 151–158.
- RecSys-2010-ZangerleGS #collaboration #information management #recommendation
- Recommending structure in collaborative semistructured information systems (EZ, WG, GS), pp. 261–264.
- RecSys-2010-ZhaoZYZZF #recommendation #social #what
- Who is talking about what: social map-based recommendation for content-centric social websites (SZ, MXZ, QY, XZ, WZ, RF), pp. 143–150.
- RecSys-2010-ZhengWZLY #case study #empirical #recommendation
- Do clicks measure recommendation relevancy?: an empirical user study (HZ, DW, QZ, HL, TY), pp. 249–252.
- SIGIR-2010-GuyZRCU #people #recommendation #social #social media
- Social media recommendation based on people and tags (IG, NZ, IR, DC, EU), pp. 194–201.
- SIGIR-2010-HuangAH #classification #recommendation #tool support
- Medical search and classification tools for recommendation (XH, AA, QH), p. 707.
- SIGIR-2010-Kawamae #recommendation
- Serendipitous recommendations via innovators (NK), pp. 218–225.
- SIGIR-2010-LathiaHCA #recommendation
- Temporal diversity in recommender systems (NL, SH, LC, XA), pp. 210–217.
- SIGIR-2010-WangLC10a #recommendation #social #social media
- User comments for news recommendation in social media (JW, QL, YPC), pp. 881–882.
- SIGIR-2010-ZhengLLZ #composition #recommendation
- Flickr group recommendation based on tensor decomposition (NZ, QL, SL, LZ), pp. 737–738.
- SAC-2010-BallatoreMKB #adaptation #interactive #named #recommendation
- RecoMap: an interactive and adaptive map-based recommender (AB, GM, CK, MB), pp. 887–891.
- SAC-2010-DuraoD #hybrid #personalisation #recommendation
- Extending a hybrid tag-based recommender system with personalization (FAD, PD), pp. 1723–1727.
- SAC-2010-KimY #multi #personalisation #recommendation
- New theoretical findings in multiple personalized recommendations (YHK, YY), pp. 94–98.
- SAC-2010-ShinKNNTO #named #ontology #recommendation #using
- ONTOMO: web-based ontology building system: ---instance recommendation using bootstrapping--- (IS, TK, HN, KN, YT, AO), pp. 1442–1443.
- SAC-2010-SuYT #music #novel #recommendation
- A novel music recommender by discovering preferable perceptual-patterns from music pieces (JHS, HHY, VST), pp. 1924–1928.
- ICSE-2010-HolmesW #recommendation
- Customized awareness: recommending relevant external change events (RH, RJW), pp. 465–474.
- ICSE-2010-Schroter #recommendation
- Failure preventing recommendations (AS), pp. 397–400.
- ICST-2010-EngstromRW #empirical #evaluation #recommendation #testing
- An Empirical Evaluation of Regression Testing Based on Fix-Cache Recommendations (EE, PR, GW), pp. 75–78.
- ASE-2009-HolmesRRW #automation #recommendation #reuse
- Automatically Recommending Triage Decisions for Pragmatic Reuse Tasks (RH, TR, MPR, RJW), pp. 397–408.
- HT-2009-MahmoodR #adaptation #recommendation
- Improving recommender systems with adaptive conversational strategies (TM, FR), pp. 73–82.
- HT-2009-SiersdorferS #folksonomy #recommendation #social #web
- Social recommender systems for web 2.0 folksonomies (SS, SS), pp. 261–270.
- SIGMOD-2009-KoutrikaBG #flexibility #named #recommendation
- FlexRecs: expressing and combining flexible recommendations (GK, BB, HGM), pp. 745–758.
- VLDB-2009-Amer-YahiaRCDY #performance #recommendation #semantics
- Group Recommendation: Semantics and Efficiency (SAY, SBR, AC, GD, CY), pp. 754–765.
- VLDB-2009-El-HelwIZ #named #recommendation #statistics
- StatAdvisor: Recommending Statistical Views (AEH, IFI, CZ), pp. 1306–1317.
- ICSM-2009-MaSZS #recommendation
- Expert recommendation with usage expertise (DM, DS, TZ, JS), pp. 535–538.
- MSR-2009-RastkarM #interactive #on the #question #recommendation #what
- On what basis to recommend: Changesets or interactions? (SR, GCM), pp. 155–158.
- CHI-2009-ChenGDMG #network #people #recommendation #social
- Make new friends, but keep the old: recommending people on social networking sites (JC, WG, CD, MJM, IG), pp. 201–210.
- CHI-2009-HansenG #recommendation
- Mixing it up: recommending collections of items (DLH, JG), pp. 1217–1226.
- CHI-2009-RaoHNJ #recommendation
- My Dating Site Thinks I’m a Loser: effects of personal photos and presentation intervals on perceptions of recommender systems (SR, TH, CN, NJ), pp. 221–224.
- CHI-2009-ReichlingW #automation #generative #recommendation
- Expert recommender systems in practice: evaluating semi-automatic profile generation (TR, VW), pp. 59–68.
- OCSC-2009-SongNKE #recommendation #using #word
- A Proposed Movie Recommendation Method Using Emotional Word Selection (MS, HN, HGK, JE), pp. 525–534.
- ICEIS-DISI-2009-Pitkaranta #information retrieval #recommendation
- Applying Information Retrieval for Market Basket Recommender Systems (TP), pp. 138–143.
- ICEIS-J-2009-JerbiRTZ #recommendation
- Applying Recommendation Technology in OLAP Systems (HJ, FR, OT, GZ), pp. 220–233.
- ICEIS-SAIC-2009-CiuffoI #case study #collaboration #information management #recommendation #using
- Using Grids to Support Information Filtering Systems — A Case Study of Running Collaborative Filtering Recommendations on gLite (LNC, EI), pp. 12–18.
- ICEIS-SAIC-2009-DrumondGMA #implementation #multi #recommendation
- Implementation Issues of the Infonorma Multi-agent Recommender System (LD, RG, DM, GA), pp. 128–133.
- CIKM-2009-AnastasakosHKR #approach #collaboration #graph #recommendation #using
- A collaborative filtering approach to ad recommendation using the query-ad click graph (TA, DH, SK, HR), pp. 1927–1930.
- CIKM-2009-CaoCYX #recommendation
- Enhancing recommender systems under volatile userinterest drifts (HC, EC, JY, HX), pp. 1257–1266.
- CIKM-2009-ShiWY #framework #named #recommendation #semantics
- Msuggest: a semantic recommender framework for traditional chinese medicine book search engine (SS, BW, YY), pp. 533–542.
- CIKM-2009-SunCSSWL #learning #recommendation
- Learning to recommend questions based on user ratings (KS, YC, XS, YIS, XW, CYL), pp. 751–758.
- CIKM-2009-XinKDL #framework #multi #random #recommendation #social
- A social recommendation framework based on multi-scale continuous conditional random fields (XX, IK, HD, MRL), pp. 1247–1256.
- ECIR-2009-MoshfeghiAPJ #collaboration #predict #rating #recommendation #semantics
- Movie Recommender: Semantically Enriched Unified Relevance Model for Rating Prediction in Collaborative Filtering (YM, DA, BP, JMJ), pp. 54–65.
- ECIR-2009-PapadopoulosMKB #graph #recommendation
- Lexical Graphs for Improved Contextual Ad Recommendation (SP, FM, YK, BB), pp. 216–227.
- KDD-2009-JamaliE #named #random #recommendation #trust
- TrustWalker: a random walk model for combining trust-based and item-based recommendation (MJ, ME), pp. 397–406.
- KDD-2009-LiDJEL #random #recommendation
- Grocery shopping recommendations based on basket-sensitive random walk (ML, MBD, IHJ, WED, PJGL), pp. 1215–1224.
- KDD-2009-McSherryM #privacy #recommendation
- Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders (FM, IM), pp. 627–636.
- KDD-2009-OnumaTF #algorithm #named #novel #recommendation
- TANGENT: a novel, “Surprise me”, recommendation algorithm (KO, HT, CF), pp. 657–666.
- KDD-2009-RendleMNS #learning #ranking #recommendation
- Learning optimal ranking with tensor factorization for tag recommendation (SR, LBM, AN, LST), pp. 727–736.
- KEOD-2009-SantosS #recommendation
- Interpretation and Recommendation Tasks Supported by Ceres System (CPS, DRdS), pp. 464–467.
- RecSys-2009-AbbassiALVY #recommendation
- Getting recommender systems to think outside the box (ZA, SAY, LVSL, SV, CY), pp. 285–288.
- RecSys-2009-AmatriainPTO #recommendation
- Rate it again: increasing recommendation accuracy by user re-rating (XA, JMP, NT, NO), pp. 173–180.
- RecSys-2009-AntonelliFGL #named #recommendation
- DynamicTV: a culture-aware recommender (FA, GF, MG, SL), pp. 257–260.
- RecSys-2009-BaoBT #recommendation
- Stacking recommendation engines with additional meta-features (XB, LB, RT), pp. 109–116.
- RecSys-2009-BaragliaCCFFPS #approach #query #recommendation
- Search shortcuts: a new approach to the recommendation of queries (RB, FC, VC, DF, VF, RP, FS), pp. 77–84.
- RecSys-2009-BaskinK #recommendation
- Preference aggregation in group recommender systems for committee decision-making (JPB, SK), pp. 337–340.
- RecSys-2009-BhattacharjeeGK #architecture #recommendation #social
- An incentive-based architecture for social recommendations (RB, AG, KK), pp. 229–232.
- RecSys-2009-BroccoG #network #recommendation
- Team recommendation in open innovation networks (MB, GG), pp. 365–368.
- RecSys-2009-CastagnosJP #process #recommendation
- Recommenders’ influence on buyers’ decision process (SC, NJ, PP), pp. 361–364.
- RecSys-2009-Castro-HerreraCM #evolution #online #recommendation
- A recommender system for dynamically evolving online forums (CCH, JCH, BM), pp. 213–216.
- RecSys-2009-Chen #adaptation #recommendation #trade-off
- Adaptive tradeoff explanations in conversational recommenders (LC), pp. 225–228.
- RecSys-2009-ChengH #effectiveness #modelling #obfuscation #recommendation
- Effective diverse and obfuscated attacks on model-based recommender systems (ZC, NH), pp. 141–148.
- RecSys-2009-ConryKR #problem #recommendation
- Recommender systems for the conference paper assignment problem (DC, YK, NR), pp. 357–360.
- RecSys-2009-CremonesiT #analysis #recommendation
- Analysis of cold-start recommendations in IPTV systems (PC, RT), pp. 233–236.
- RecSys-2009-FreyneJGG #recommendation
- Increasing engagement through early recommender intervention (JF, MJ, IG, WG), pp. 85–92.
- RecSys-2009-GansnerHKV #clustering #recommendation #visualisation
- Putting recommendations on the map: visualizing clusters and relations (ERG, YH, SGK, CV), pp. 345–348.
- RecSys-2009-GemmellRSCM #ambiguity #folksonomy #recommendation
- The impact of ambiguity and redundancy on tag recommendation in folksonomies (JG, MR, TS, LC, BM), pp. 45–52.
- RecSys-2009-GivonL #predict #recommendation
- Predicting social-tags for cold start book recommendations (SG, VL), pp. 333–336.
- RecSys-2009-Golbeck #recommendation #social #trust #tutorial #using
- Tutorial on using social trust for recommender systems (JG), pp. 425–426.
- RecSys-2009-GreenLAMKHBM #generative #recommendation
- Generating transparent, steerable recommendations from textual descriptions of items (SJG, PL, JA, FM, SK, JH, JB, XWM), pp. 281–284.
- RecSys-2009-GunawardanaM #approach #hybrid #recommendation
- A unified approach to building hybrid recommender systems (AG, CM), pp. 117–124.
- RecSys-2009-GuyZCRUYO #personalisation #recommendation #social
- Personalized recommendation of social software items based on social relations (IG, NZ, DC, IR, EU, SY, SOK), pp. 53–60.
- RecSys-2009-HelouSSG #process #ranking #recommendation
- The 3A contextual ranking system: simultaneously recommending actors, assets, and group activities (SEH, CS, SS, DG), pp. 373–376.
- RecSys-2009-HuP #recommendation
- Acceptance issues of personality-based recommender systems (RH, PP), pp. 221–224.
- RecSys-2009-JamaliE #network #recommendation #trust #using
- Using a trust network to improve top-N recommendation (MJ, ME), pp. 181–188.
- RecSys-2009-JannachH #case study #effectiveness #internet #mobile #recommendation
- A case study on the effectiveness of recommendations in the mobile internet (DJ, KH), pp. 205–208.
- RecSys-2009-JaschkeEHS #recommendation #testing
- Testing and evaluating tag recommenders in a live system (RJ, FE, AH, GS), pp. 369–372.
- RecSys-2009-KawamaeSY #personalisation #recommendation
- Personalized recommendation based on the personal innovator degree (NK, HS, TY), pp. 329–332.
- RecSys-2009-KhezrzadehTW #power of #recommendation
- Harnessing the power of “favorites” lists for recommendation systems (MK, AT, WWW), pp. 289–292.
- RecSys-2009-KnijnenburgW #adaptation #comprehension #elicitation #recommendation #user satisfaction
- Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system (BPK, MCW), pp. 381–384.
- RecSys-2009-KrestelFN #recommendation
- Latent dirichlet allocation for tag recommendation (RK, PF, WN), pp. 61–68.
- RecSys-2009-LousameS #recommendation
- View-based recommender systems (FPL, ES), pp. 389–392.
- RecSys-2009-MaLK #learning #recommendation #trust
- Learning to recommend with trust and distrust relationships (HM, MRL, IK), pp. 189–196.
- RecSys-2009-MoghaddamJEH #feedback #named #recommendation #trust #using
- FeedbackTrust: using feedback effects in trust-based recommendation systems (SM, MJ, ME, JH), pp. 269–272.
- RecSys-2009-NathansonBG #recommendation
- Donation dashboard: a recommender system for donation portfolios (TN, EB, KYG), pp. 253–256.
- RecSys-2009-Nnadi #clustering #correlation #multi #recommendation #set
- Applying relevant set correlation clustering to multi-criteria recommender systems (NN), pp. 401–404.
- RecSys-2009-OMahonyS #learning #recommendation
- Learning to recommend helpful hotel reviews (MPO, BS), pp. 305–308.
- RecSys-2009-PannielloTGPP #comparison #recommendation
- Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems (UP, AT, MG, CP, AP), pp. 265–268.
- RecSys-2009-ParameswaranG #recommendation
- Recommendations with prerequisites (AGP, HGM), pp. 353–356.
- RecSys-2009-ParkC #recommendation
- Pairwise preference regression for cold-start recommendation (STP, WC), pp. 21–28.
- RecSys-2009-PhelanMS #realtime #recommendation #topic #twitter #using
- Using twitter to recommend real-time topical news (OP, KM, BS), pp. 385–388.
- RecSys-2009-PilaszyT #metadata #recommendation
- Recommending new movies: even a few ratings are more valuable than metadata (IP, DT), pp. 93–100.
- RecSys-2009-PudhiyaveetilGLE #concept #recommendation
- Conceptual recommender system for CiteSeerX (AKP, SG, HPL, JE), pp. 241–244.
- RecSys-2009-PuZC #recommendation
- Critiquing recommenders for public taste products (PP, MZ, SC), pp. 249–252.
- RecSys-2009-QasimOWHO #partial order #recommendation
- A partial-order based active cache for recommender systems (UQ, VO, YfBW, MEH, MTÖ), pp. 209–212.
- RecSys-2009-QuerciaC #mobile #named #recommendation #using
- FriendSensing: recommending friends using mobile phones (DQ, LC), pp. 273–276.
- RecSys-2009-Recio-GarciaJSD #recommendation
- Personality aware recommendations to groups (JARG, GJD, AASRG, BDA), pp. 325–328.
- RecSys-2009-Schubert #knowledge-based #personalisation #query #recommendation
- Personalized query relaxations and repairs in knowledge-based recommendation (MS), pp. 409–412.
- RecSys-2009-SemeraroLBG #recommendation
- Knowledge infusion into content-based recommender systems (GS, PL, PB, MdG), pp. 301–304.
- RecSys-2009-SeyerlehnerFW #on the #recommendation
- On the limitations of browsing top-N recommender systems (KS, AF, GW), pp. 321–324.
- RecSys-2009-SymeonidisNM #named #recommendation
- MoviExplain: a recommender system with explanations (PS, AN, YM), pp. 317–320.
- RecSys-2009-Tolomei #mining #process #recommendation #web
- Search the web x.0: mining and recommending web-mediated processes (GT), pp. 417–420.
- RecSys-2009-TsatsouMKD #analysis #framework #personalisation #recommendation #semantics
- A semantic framework for personalized ad recommendation based on advanced textual analysis (DT, FM, IK, PCD), pp. 217–220.
- RecSys-2009-TylerZCZ #categorisation #recommendation
- Ordering innovators and laggards for product categorization and recommendation (SKT, SZ, YC, YZ), pp. 29–36.
- RecSys-2009-UmyarovT #estimation #modelling #rating #recommendation #using
- Improving rating estimation in recommender systems using aggregation- and variance-based hierarchical models (AU, AT), pp. 37–44.
- RecSys-2009-ViappianiB #recommendation #set
- Regret-based optimal recommendation sets in conversational recommender systems (PV, CB), pp. 101–108.
- RecSys-2009-WedelRC #personalisation #recommendation
- Up close and personalized: a marketing view of recommendation systems (MW, RTR, TSC), pp. 3–4.
- RecSys-2009-WeimerKB #matrix #recommendation
- Maximum margin matrix factorization for code recommendation (MW, AK, MB), pp. 309–312.
- RecSys-2009-Zhang #recommendation
- Enhancing diversity in Top-N recommendation (MZ), pp. 397–400.
- RecSys-2009-ZhouR #assessment #recommendation
- Assessment of conversation co-mentions as a resource for software module recommendation (DXZ, PR), pp. 133–140.
- SIGIR-2009-GuanBMCW #graph #multi #personalisation #ranking #recommendation #using
- Personalized tag recommendation using graph-based ranking on multi-type interrelated objects (ZG, JB, QM, CC, CW), pp. 540–547.
- SIGIR-2009-KonstasSJ #collaboration #network #on the #recommendation #social
- On social networks and collaborative recommendation (IK, VS, JMJ), pp. 195–202.
- SIGIR-2009-MaKL #learning #recommendation #social #trust
- Learning to recommend with social trust ensemble (HM, IK, MRL), pp. 203–210.
- ECOOP-2009-ZhongXZPM #api #mining #named #recommendation
- MAPO: Mining and Recommending API Usage Patterns (HZ, TX, LZ, JP, HM), pp. 318–343.
- RE-2009-Castro-HerreraCM #elicitation #online #recommendation #requirements
- Enhancing Stakeholder Profiles to Improve Recommendations in Online Requirements Elicitation (CCH, JCH, BM), pp. 37–46.
- SAC-2009-Castro-HerreraDCM #elicitation #recommendation #requirements #scalability
- A recommender system for requirements elicitation in large-scale software projects (CCH, CD, JCH, BM), pp. 1419–1426.
- SAC-2009-dAciernoMP #library #recommendation
- A recommendation system for browsing digital libraries (Ad, VM, AP), pp. 1771–1778.
- SAC-2009-PengC #collaboration #multi #named #recommendation #trust
- iTrustU: a blog recommender system based on multi-faceted trust and collaborative filtering (TCP, ScTC), pp. 1278–1285.
- ESEC-FSE-2009-AshokJLRSV #debugging #named #recommendation
- DebugAdvisor: a recommender system for debugging (BA, JMJ, HL, SKR, GS, VV), pp. 373–382.
- ICSE-2009-DagenaisR #analysis #api #evolution #named #recommendation
- SemDiff: Analysis and recommendation support for API evolution (BD, MPR), pp. 599–602.
- ASE-2008-ZhangGC #analysis #automation #clustering #recommendation
- Automated Aspect Recommendation through Clustering-Based Fan-in Analysis (DZ, YG, XC), pp. 278–287.
- HT-2008-PanissonRS #framework #implementation #named #recommendation #social
- X-hinter: a framework for implementing social oriented recommender systems (AP, GR, RS), pp. 235–236.
- SIGMOD-2008-Amer-YahiaGSY #recommendation #social
- From del.icio.us to x.qui.site: recommendations in social tagging sites (SAY, AG, JS, CY), pp. 1323–1326.
- SIGMOD-2008-Konstan #recommendation
- Introduction to recommender systems (JAK), pp. 1373–1374.
- VLDB-2008-ShaoCTYA #enterprise #named #problem #recommendation
- EasyTicket: a ticket routing recommendation engine for enterprise problem resolution (QS, YC, ST, XY, NA), pp. 1436–1439.
- CSEET-2008-ShoemakerDIM #assurance #recommendation
- Integrating Secure Software Assurance Content with SE2004 Recommendations (DS, AD, JAI, NRM), pp. 59–66.
- CHI-2008-BellottiBCDFIKNPPRRSW #mobile #recommendation
- Activity-based serendipitous recommendations with the Magitti mobile leisure guide (VB, JBB, EHhC, ND, JF, EI, THK, MWN, KP, BP, PR, MR, DJS, AW), pp. 1157–1166.
- CHI-2008-ODonovanSGBH #interactive #named #recommendation #visual notation
- PeerChooser: visual interactive recommendation (JO, BS, BG, SB, TH), pp. 1085–1088.
- ICEIS-AIDSS-2008-RokachMS #elicitation #recommendation
- Anytime AHP Method for Preferences Elicitation in Stereotype-Based Recommender System (LR, AM, AS), pp. 268–275.
- ICEIS-HCI-2008-LucaB #design #implementation #navigation #recommendation
- Microformats Based Navigation Assistant — A Non-intrusive Recommender Agent: Design and Implementation (APL, SCB), pp. 54–61.
- ICEIS-J-2008-LucaB08a #experience #recommendation #user interface #web
- Enhancing User Experience on the Web via Microformats-Based Recommendations (APL, SCB), pp. 321–333.
- ICEIS-J-2008-WengXLN08a #estimation #performance #recommendation
- An Efficient Neighbourhood Estimation Technique for Making Recommendations (LTW, YX, YL, RN), pp. 253–264.
- ICEIS-J-2008-WengXLN08b #quality #recommendation #taxonomy
- Improve Recommendation Quality with Item Taxonomic Information (LTW, YX, YL, RN), pp. 265–279.
- ICEIS-SAIC-2008-Uchyigit08a #recommendation
- A Software Agent for Content Based Recommendations for the WWW (GU), pp. 178–183.
- ICEIS-SAIC-2008-WengXLLN #recommendation #taxonomy #web
- Web Information Recommendation Making Based on Item Taxonomy (LTW, YX, YL, RN), pp. 20–28.
- ICEIS-SAIC-2008-WengXLN #estimation #performance #recommendation
- Efficient Neighbourhood Estimation for Recommendation Making (LTW, YX, YL, RN), pp. 12–19.
- CIKM-2008-ChiZGZ #personalisation #probability #recommendation
- Probabilistic polyadic factorization and its application to personalized recommendation (YC, SZ, YG, YZ), pp. 941–950.
- CIKM-2008-GuoXBY #community #recommendation
- Tapping on the potential of q&a community by recommending answer providers (JG, SX, SB, YY), pp. 921–930.
- CIKM-2008-MaYLK08a #matrix #named #probability #recommendation #social #using
- SoRec: social recommendation using probabilistic matrix factorization (HM, HY, MRL, IK), pp. 931–940.
- CIKM-2008-VatturiGDMB #personalisation #recommendation
- Tag-based filtering for personalized bookmark recommendations (PKV, WG, CD, MJM, BB), pp. 1395–1396.
- CIKM-2008-YatesJPCS #named #recommendation #smarttech #specification
- SHOPSMART: product recommendations through technical specifications and user reviews (AY, JJ, AMP, ADC, NS), pp. 1501–1502.
- ECIR-2008-ValletHJ #evaluation #graph #recommendation
- Use of Implicit Graph for Recommending Relevant Videos: A Simulated Evaluation (DV, FH, JMJ), pp. 199–210.
- KDD-2008-ChenZC #collaboration #community #personalisation #recommendation
- Combinational collaborative filtering for personalized community recommendation (WC, DZ, EYC), pp. 115–123.
- KDD-2008-NguyenPS #recommendation
- A software system for buzz-based recommendations (HN, NP, NS), pp. 1093–1096.
- RecSys-2008-AdomaviciusT #recommendation
- Context-aware recommender systems (GA, AT), pp. 335–336.
- RecSys-2008-Baltrunas #information management #recommendation
- Exploiting contextual information in recommender systems (LB), pp. 295–298.
- RecSys-2008-BogersB #recommendation #using
- Recommending scientific articles using citeulike (TB, AvdB), pp. 287–290.
- RecSys-2008-Broder #recommendation
- Computational advertising and recommender systems (AZB), pp. 1–2.
- RecSys-2008-BrodskyHW #framework #named #recommendation
- CARD: a decision-guidance framework and application for recommending composite alternatives (AB, SMH, JW), pp. 171–178.
- RecSys-2008-BryanOC #collaboration #recommendation #retrieval
- Unsupervised retrieval of attack profiles in collaborative recommender systems (KB, MPO, PC), pp. 155–162.
- RecSys-2008-Burke #recommendation #robust
- Robust recommender systems (RDB), pp. 331–332.
- RecSys-2008-CelmaH #approach #novel #recommendation
- A new approach to evaluating novel recommendations (ÒC, PH), pp. 179–186.
- RecSys-2008-ChenP #evaluation #interface #recommendation
- A cross-cultural user evaluation of product recommender interfaces (LC, PP), pp. 75–82.
- RecSys-2008-DegemmisLSB #recommendation #semantics
- Integrating tags in a semantic content-based recommender (MD, PL, GS, PB), pp. 163–170.
- RecSys-2008-DiasLLEL #case study #personalisation #recommendation
- The value of personalised recommender systems to e-business: a case study (MBD, DL, ML, WED, PJGL), pp. 291–294.
- RecSys-2008-GargW #interactive #personalisation #recommendation
- Personalized, interactive tag recommendation for flickr (NG, IW), pp. 67–74.
- RecSys-2008-GeyerDMMF #online #recommendation #self #topic
- Recommending topics for self-descriptions in online user profiles (WG, CD, DRM, MJM, JF), pp. 59–66.
- RecSys-2008-GunawardanaM #recommendation
- Tied boltzmann machines for cold start recommendations (AG, CM), pp. 19–26.
- RecSys-2008-KoutrikaIBG #flexibility #recommendation
- Flexible recommendations over rich data (GK, RI, BB, HGM), pp. 203–210.
- RecSys-2008-KrishnanNNDK #online #predict #recommendation
- Who predicts better?: results from an online study comparing humans and an online recommender system (VK, PKN, MN, RTD, JAK), pp. 211–218.
- RecSys-2008-Kwon #rating #recommendation #using
- Improving top-n recommendation techniques using rating variance (YK), pp. 307–310.
- RecSys-2008-LakiotakiTM #analysis #multi #named #recommendation
- UTA-Rec: a recommender system based on multiple criteria analysis (KL, ST, NFM), pp. 219–226.
- RecSys-2008-Lee #named #recommendation #trust
- PITTCULT: trust-based cultural event recommender (DHL), pp. 311–314.
- RecSys-2008-LiWZZC #named #parallel #query #recommendation
- Pfp: parallel fp-growth for query recommendation (HL, YW, DZ, MZ, EYC), pp. 107–114.
- RecSys-2008-OostendorpR #interface #recommendation #reduction
- Three recommender approaches to interface controls reduction (NO, PR), pp. 235–242.
- RecSys-2008-ParkT #how #recommendation
- The long tail of recommender systems and how to leverage it (YJP, AT), pp. 11–18.
- RecSys-2008-Recio-GarciaDG #prototype #recommendation
- Prototyping recommender systems in jcolibri (JARG, BDA, PAGC), pp. 243–250.
- RecSys-2008-RendleS #kernel #matrix #modelling #recommendation #scalability
- Online-updating regularized kernel matrix factorization models for large-scale recommender systems (SR, LST), pp. 251–258.
- RecSys-2008-ResnickS #recommendation
- The information cost of manipulation-resistance in recommender systems (PR, RS), pp. 147–154.
- RecSys-2008-Sampaio #internet #network #performance #process #recommendation
- A network performance recommendation process for advanced internet applications users (LNS), pp. 315–318.
- RecSys-2008-Santos #adaptation #lifecycle #recommendation #standard
- A recommender system to provide adaptive and inclusive standard-based support along the elearning life cycle (OCS), pp. 319–322.
- RecSys-2008-ShaniCM #mining #recommendation #web
- Mining recommendations from the web (GS, DMC, CM), pp. 35–42.
- RecSys-2008-ShepitsenGMB #clustering #personalisation #recommendation #social #using
- Personalized recommendation in social tagging systems using hierarchical clustering (AS, JG, BM, RDB), pp. 259–266.
- RecSys-2008-SymeonidisNM #recommendation #reduction
- Tag recommendations based on tensor dimensionality reduction (PS, AN, YM), pp. 43–50.
- RecSys-2008-Teppan #recommendation
- Implications of psychological phenomenons for recommender systems (ECT), pp. 323–326.
- RecSys-2008-Umyarov #performance #predict #recommendation
- Leveraging aggregate ratings for improving predictive performance of recommender systems (AU), pp. 327–330.
- RecSys-2008-WuWC #analysis #automation #incremental #probability #recommendation #semantics
- Incremental probabilistic latent semantic analysis for automatic question recommendation (HW, YW, XC), pp. 99–106.
- RecSys-2008-XuJL #documentation #image #online #personalisation #recommendation #video
- Personalized online document, image and video recommendation via commodity eye-tracking (SX, HJ, FCML), pp. 83–90.
- RecSys-2008-ZanardiC #ranking #recommendation #social #using
- Social ranking: uncovering relevant content using tag-based recommender systems (VZ, LC), pp. 51–58.
- RecSys-2008-Zanker #collaboration #constraints #recommendation
- A collaborative constraint-based meta-level recommender (MZ), pp. 139–146.
- RecSys-2008-ZhangH #recommendation
- Avoiding monotony: improving the diversity of recommendation lists (MZ, NH), pp. 123–130.
- SEKE-2008-Jannach #development #knowledge-based #recommendation
- Knowledge-based System Development with Scripting Technology: A Recommender System Example (DJ), pp. 405–416.
- SEKE-2008-LucasSM #classification #personalisation #recommendation #towards
- Comparing the Use of Traditional and Associative Classifiers towards Personalized Recommendations (JPL, SS, MNMG), pp. 607–612.
- SIGIR-2008-CreceliusKMNPSW #recommendation #social
- Social recommendations at work (TC, MK, SM, TN, JXP, RS, GW), p. 884.
- SIGIR-2008-SongZLZLLG #automation #realtime #recommendation
- Real-time automatic tag recommendation (YS, ZZ, HL, QZ, JL, WCL, CLG), pp. 515–522.
- SIGIR-2008-ZhangZL #algorithm #rank #recommendation #topic
- A topical PageRank based algorithm for recommender systems (LZ, KZ, CL), pp. 713–714.
- RE-2008-Castro-HerreraDCM #data mining #elicitation #mining #process #recommendation #requirements #scalability #using
- Using Data Mining and Recommender Systems to Facilitate Large-Scale, Open, and Inclusive Requirements Elicitation Processes (CCH, CD, JCH, BM), pp. 165–168.
- SAC-2008-LathiaHC #community #correlation #recommendation
- The effect of correlation coefficients on communities of recommenders (NL, SH, LC), pp. 2000–2005.
- SAC-2008-LohLSWO #keyword #recommendation #representation #taxonomy
- Comparing keywords and taxonomies in the representation of users profiles in a content-based recommender system (SL, FL, GS, LKW, JPMdO), pp. 2030–2034.
- SAC-2008-TaghipourK #hybrid #recommendation #web
- A hybrid web recommender system based on Q-learning (NT, AAK), pp. 1164–1168.
- SAC-2008-Tso-SutterMS #algorithm #collaboration #recommendation
- Tag-aware recommender systems by fusion of collaborative filtering algorithms (KHLTS, LBM, LST), pp. 1995–1999.
- SAC-2008-VictorCTC #recommendation #trust
- Whom should I trust?: the impact of key figures on cold start recommendations (PV, CC, AT, MDC), pp. 2014–2018.
- ICSE-2008-DagenaisR #adaptation #evolution #framework #recommendation
- Recommending adaptive changes for framework evolution (BD, MPR), pp. 481–490.
- ASPLOS-2008-McCunePPRS #execution #how #recommendation
- How low can you go?: recommendations for hardware-supported minimal TCB code execution (JMM, BP, AP, MKR, AS), pp. 14–25.
- HT-2007-BradshawL #recommendation
- Annotation consensus: implications for passage recommendation in scientific literature (SB, ML), pp. 209–216.
- MSR-2007-MintoM #recommendation
- Recommending Emergent Teams (SM, GCM), p. 5.
- HCI-MIE-2007-KoLKJL #case study #evaluation #personalisation #recommendation #user satisfaction
- A Study on User Satisfaction Evaluation About the Recommendation Techniques of a Personalized EPG System on Digital TV (SMK, YJL, MHK, YGJ, SWL), pp. 909–917.
- HCI-MIE-2007-OkadaI #collaboration #evaluation #recommendation
- Evaluation of P2P Information Recommendation Based on Collaborative Filtering (HO, MI), pp. 449–458.
- HIMI-MTT-2007-OrimoKMT #analysis #evaluation #recommendation
- Analysis and Evaluation of Recommendation Systems (EO, HK, TM, AT), pp. 144–152.
- CAiSE-2007-StirnaPS #case study #enterprise #experience #modelling #recommendation
- Participative Enterprise Modeling: Experiences and Recommendations (JS, AP, KS), pp. 546–560.
- ICEIS-EIS-2007-SandkuhlOSSK #case study #experience #industrial #ontology #recommendation
- Ontology Construction in Practice — Experiences and Recommendations from Industrial Cases (KS, AÖ, AVS, NS, AK), pp. 250–256.
- ICEIS-HCI-2007-MelguizoBDBB #memory management #recommendation #what
- What a Proactive Recommendation System Needs — Relevance, Non-Intrusiveness, and a New Long-Term Memory (MCPM, TB, AD, LB, AvdB), pp. 86–91.
- ICEIS-HCI-2007-UchyigitCC #2d #named #recommendation #user interface
- KEXPLORATOR — A 2D Map Exploration User Interface for Recommender Systems (GU, KLC, DC), pp. 223–228.
- ICEIS-SAIC-2007-DrumondGL #case study #modelling #recommendation #specification
- A Case Study on the Application of the MAAEM Methodology for the Specification Modeling of Recommender Systems in the Legal Domain (LD, RG, AL), pp. 155–160.
- ICEIS-SAIC-2007-LazanasKK #hybrid #policy #recommendation #web #web service
- Applying Hybrid Recommendation Policies through Agent-Invoked Web Services in E-Markets (AL, NIK, VK), pp. 161–166.
- ECIR-2007-CastagnosB #community #distributed #personalisation #recommendation
- Personalized Communities in a Distributed Recommender System (SC, AB), pp. 343–355.
- KDD-2007-BellKV #modelling #multi #recommendation #scalability
- Modeling relationships at multiple scales to improve accuracy of large recommender systems (RMB, YK, CV), pp. 95–104.
- KDD-2007-DingSJL #framework #kernel #learning #recommendation #using
- A learning framework using Green’s function and kernel regularization with application to recommender system (CHQD, RJ, TL, HDS), pp. 260–269.
- KDD-2007-Schickel-ZuberF #clustering #learning #recommendation #using
- Using hierarchical clustering for learning theontologies used in recommendation systems (VSZ, BF), pp. 599–608.
- RecSys-2007-BogersB #algorithm #information retrieval #recommendation
- Comparing and evaluating information retrieval algorithms for news recommendation (TB, AvdB), pp. 141–144.
- RecSys-2007-BridgeR #editing #query #recommendation
- Supporting product selection with query editing recommendations (DGB, FR), pp. 65–72.
- RecSys-2007-ChenP #evaluation #hybrid #recommendation
- The evaluation of a hybrid critiquing system with preference-based recommendations organization (LC, PP), pp. 169–172.
- RecSys-2007-Donaldson #hybrid #music #recommendation
- A hybrid social-acoustic recommendation system for popular music (JD), pp. 187–190.
- RecSys-2007-FreyneFC #data access #recommendation #social #towards
- Toward the exploitation of social access patterns for recommendation (JF, RF, MC), pp. 179–182.
- RecSys-2007-HarperSF #clustering #recommendation #social
- Supporting social recommendations with activity-balanced clustering (FMH, SS, DF), pp. 165–168.
- RecSys-2007-LeinoR #recommendation
- Case amazon: ratings and reviews as part of recommendations (JL, KJR), pp. 137–140.
- RecSys-2007-LiDEL #probability #recommendation
- A probabilistic model for item-based recommender systems (ML, MBD, WED, PJGL), pp. 129–132.
- RecSys-2007-Lorenzi #approach #knowledge-based #maintenance #multi #recommendation
- A multiagent knowledge-based recommender approach with truth maintenance (FL), pp. 195–198.
- RecSys-2007-MassaA #recommendation #trust
- Trust-aware recommender systems (PM, PA), pp. 17–24.
- RecSys-2007-McCarthy #challenge #physics #recommendation
- The challenges of recommending digital selves in physical spaces (JFM), pp. 185–186.
- RecSys-2007-NathansonBG #adaptation #clustering #recommendation #using
- Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering (TN, EB, KYG), pp. 149–152.
- RecSys-2007-NguyenDB #induction #recommendation #rule-based
- Improving new user recommendations with rule-based induction on cold user data (ATN, ND, CB), pp. 121–128.
- RecSys-2007-NguyenR #evaluation #game studies #interactive #mobile #recommendation
- Replaying live-user interactions in the off-line evaluation of critique-based mobile recommendations (QNN, FR), pp. 81–88.
- RecSys-2007-OMahonyS #online #recommendation
- A recommender system for on-line course enrolment: an initial study (MPO, BS), pp. 133–136.
- RecSys-2007-PronkVPT #classification #naive bayes #recommendation
- Incorporating user control into recommender systems based on naive bayesian classification (VP, WFJV, AP, MT), pp. 73–80.
- RecSys-2007-ResnickS #recommendation
- The influence limiter: provably manipulation-resistant recommender systems (PR, RS), pp. 25–32.
- RecSys-2007-SandvigMB #collaboration #mining #recommendation #robust
- Robustness of collaborative recommendation based on association rule mining (JJS, BM, RDB), pp. 105–112.
- RecSys-2007-TaghipourKG #approach #learning #recommendation #web
- Usage-based web recommendations: a reinforcement learning approach (NT, AAK, SSG), pp. 113–120.
- RecSys-2007-TiemannP #hybrid #learning #music #recommendation #towards
- Towards ensemble learning for hybrid music recommendation (MT, SP), pp. 177–178.
- RecSys-2007-Tintarev #recommendation
- Explanations of recommendations (NT), pp. 203–206.
- RecSys-2007-TintarevM #design #effectiveness #recommendation
- Effective explanations of recommendations: user-centered design (NT, JM), pp. 153–156.
- RecSys-2007-UmyarovT #recommendation
- Leveraging aggregate ratings for better recommendations (AU, AT), pp. 161–164.
- RecSys-2007-ViappianiPF #adaptation #recommendation
- Conversational recommenders with adaptive suggestions (PV, PP, BF), pp. 89–96.
- RecSys-2007-WebsterV #recommendation
- The keepup recommender system (AW, JV), pp. 173–176.
- RecSys-2007-WinterboerM #recommendation
- Evaluating information presentation strategies for spoken recommendations (AW, JDM), pp. 157–160.
- RecSys-2007-ZhangP #algorithm #collaboration #predict #recommendation #recursion
- A recursive prediction algorithm for collaborative filtering recommender systems (JZ, PP), pp. 57–64.
- SIGIR-2007-MeiYHYYL #named #online #recommendation #video
- VideoReach: an online video recommendation system (TM, BY, XSH, LY, SQY, SL), pp. 767–768.
- SIGIR-2007-StrohmanCJ #recommendation
- Recommending citations for academic papers (TS, WBC, DJ), pp. 705–706.
- SIGIR-2007-ZhangK #modelling #performance #recommendation
- Efficient bayesian hierarchical user modeling for recommendation system (YZ, JK), pp. 47–54.
- SAC-2007-BirukouBDGKM #approach #development #named #recommendation
- IC-service: a service-oriented approach to the development of recommendation systems (AB, EB, VD, PG, NK, AM), pp. 1683–1688.
- SAC-2007-RuffoS #peer-to-peer #recommendation
- Evaluating peer-to-peer recommender systems that exploit spontaneous affinities (GR, RS), pp. 1574–1578.
- ESEC-FSE-2007-SaulFDB #random #recommendation
- Recommending random walks (ZMS, VF, PTD, CB), pp. 15–24.
- CHI-2006-BonhardHMS #recommendation #similarity #using
- Accounting for taste: using profile similarity to improve recommender systems (PB, CH, JDM, MAS), pp. 1057–1066.
- CSCW-2006-McNeeKK #recommendation #research
- Don’t look stupid: avoiding pitfalls when recommending research papers (SMM, NK, JAK), pp. 171–180.
- ICEIS-SAIC-2006-LazanasKP #framework #recommendation #transaction
- Providing Recommendations in an Agent-Based Transportation Transactions Management Platform (AL, NIK, YP), pp. 87–92.
- KDD-2006-BurkeMWB #classification #collaboration #detection #recommendation
- Classification features for attack detection in collaborative recommender systems (RDB, BM, CW, RB), pp. 542–547.
- KDD-2006-IwataSY #recommendation
- Recommendation method for extending subscription periods (TI, KS, TY), pp. 574–579.
- KDD-2006-ParkPMGD #recommendation #robust
- Naïve filterbots for robust cold-start recommendations (STP, DP, OM, NG, DD), pp. 699–705.
- KDD-2006-ZhangCFM #detection #recommendation
- Attack detection in time series for recommender systems (SZ, AC, JF, FM), pp. 809–814.
- SEKE-2006-CazellaA #architecture #data mining #mining #multi #recommendation #research
- An architecture based on multi-agent system and data mining for recommending research papers and researchers (SCC, LOCA), pp. 67–72.
- SIGIR-2006-SongTLS #data flow #personalisation #recommendation
- Personalized recommendation driven by information flow (XS, BLT, CYL, MTS), pp. 509–516.
- SIGIR-2006-ZhangOFM #analysis #linear #recommendation
- Analysis of a low-dimensional linear model under recommendation attacks (SZ, YO, JF, FM), pp. 517–524.
- SAC-2006-BaragliaLOSS #privacy #recommendation #web
- A privacy preserving web recommender system (RB, CL, SO, MS, FS), pp. 559–563.
- SAC-2006-HessSS #documentation #personalisation #recommendation
- Trust-enhanced visibility for personalized document recommendations (CH, KS, CS), pp. 1865–1869.
- SAC-2006-NikovskiK #induction #personalisation #recommendation
- Induction of compact decision trees for personalized recommendation (DN, VK), pp. 575–581.
- SAC-2006-RothF #information management #recommendation
- Trust-decisions on the base of maximal information of recommended direct-trust (UR, VF), pp. 1898–1901.
- SAC-2006-ZankerG #recommendation
- Recommendation-based browsing assistance for corporate knowledge portals (MZ, SG), pp. 1116–1117.
- SIGMOD-2005-ConsensBTM #benchmark #metric #recommendation
- Goals and Benchmarks for Autonomic Configuration Recommenders (MPC, DB, AMT, LM), pp. 239–250.
- ICEIS-v4-2005-FoussFKPS #recommendation #web
- Web Recommendation System Based on a Markov-Chainmodel (FF, SF, MK, AP, MS), pp. 56–63.
- CIKM-2005-HanK #recommendation
- Feature-based recommendation system (EHH, GK), pp. 446–452.
- KDD-2005-JinZM #collaboration #recommendation #web
- A maximum entropy web recommendation system: combining collaborative and content features (XJ, YZ, BM), pp. 612–617.
- SEKE-2005-FelfernigG #development #effectiveness #knowledge-based #process #recommendation
- AI Technologies Supporting Effective Development Processes for Knowledge-based Recommender Applications (AF, SG), pp. 372–379.
- SEKE-2005-LienT #network #recommendation #web
- A Web Pages Recommender with Bayesian Networks (CCL, HLT), pp. 82–87.
- SEKE-2005-TsunodaKOMM #collaboration #java #named #recommendation
- Javawock: A Java Class Recommender System Based on Collaborative Filtering (MT, TK, NO, AM, KiM), pp. 491–497.
- SIGIR-2005-CanoKW #music #recommendation
- An industrial-strength content-based music recommendation system (PC, MK, NW), p. 673.
- SAC-2005-AvesaniMT #recommendation
- A trust-enhanced recommender system application: Moleskiing (PA, PM, RT), pp. 1589–1593.
- SAC-2005-Moloney #distributed #network #pervasive #recommendation #simulation
- Simulation of a distributed recommendation system for pervasive networks (SM), pp. 1577–1581.
- ESEC-FSE-2005-HolmesWM #recommendation
- Strathcona example recommendation tool (RH, RJW, GCM), pp. 237–240.
- ICSE-2005-HolmesM #recommendation #source code #using
- Using structural context to recommend source code examples (RH, GCM), pp. 117–125.
- VLDB-2004-ThorR #adaptation #named #recommendation
- AWESOME — A Data Warehouse-based System for Adaptive Website Recommendations (AT, ER), pp. 384–395.
- ICEIS-v2-2004-BaykalAP #automation #reasoning #recommendation
- Automated Product Recommendation by Employing Case-Based Reasoning Agents (MÖB, RA, FP), pp. 515–518.
- ICEIS-v3-2004-MontanerLR #evaluation #recommendation
- Evaluation of Recommender Systems Through Simulated Users (MM, BL, JLdlR), pp. 303–308.
- ICEIS-v4-2004-DegemmisLSCLG #collaboration #hybrid #recommendation
- A Hybrid Collaborative Recommender System Based on User Profiles (MD, PL, GS, MFC, OL, SG), pp. 162–169.
- ICEIS-v4-2004-KaracapilidisL #framework #online #recommendation
- A Recommendation Based Framework for Online Product Configuration (NIK, TL), pp. 303–308.
- ICEIS-v4-2004-LohGLBRSAP #chat #library #recommendation #web
- Analyzing Web Chat Messages for Recommending Items from a Digital Library (SL, RSG, DL, TB, RR, GS, LA, TP), pp. 41–48.
- ICEIS-v5-2004-GonzalezLR #modelling #recommendation
- Managing Emotions in Smart User Models for Recommender Systems (GG, BL, JLdlR), pp. 187–194.
- ICEIS-v5-2004-PluAVM #recommendation #social #social media
- A Contact Recommender System for a Mediated Social Media (MP, LA, LV, JCM), pp. 107–114.
- CIKM-2004-JungHWH #named #recommendation
- SERF: integrating human recommendations with search (SJ, KH, JW, JLH), pp. 571–580.
- CIKM-2004-ZieglerLS #recommendation
- Taxonomy-driven computation of product recommendations (CNZ, GL, LST), pp. 406–415.
- KDD-2004-AliS #architecture #collaboration #distributed #named #recommendation #using
- TiVo: making show recommendations using a distributed collaborative filtering architecture (KA, WvS), pp. 394–401.
- SIGIR-2004-LiKGO #music #recommendation
- A music recommender based on audio features (QL, BMK, DG, DwO), pp. 532–533.
- SIGIR-2004-UpstillR #recommendation #web
- Exploiting hyperlink recommendation evidence in navigational web search (TU, SER), pp. 576–577.
- SAC-2004-StraubH #mobile #recommendation
- An anonymous bonus point system for mobile commerce based on word-of-mouth recommendation (TS, AH), pp. 766–773.
- HT-2003-MacedoTCP #automation #case study #experience #recommendation #web
- Automatically sharing web experiences through a hyperdocument recommender system (AAM, KNT, JACG, MdGCP), pp. 48–56.
- CHI-2003-CosleyLAKR #how #interface #recommendation
- Is seeing believing?: how recommender system interfaces affect users’ opinions (DC, SKL, IA, JAK, JR), pp. 585–592.
- CHI-2003-McDonald #collaboration #comparative #evaluation #network #recommendation #social
- Recommending collaboration with social networks: a comparative evaluation (DWM), pp. 593–600.
- ICEIS-v2-2003-WangRLC #mining #online #realtime #recommendation #web
- Mining Web Usage Data for Real-Time Online Recommendation (MW, SJR, SYL, JKYC), pp. 575–578.
- ICEIS-v4-2003-LiKM #architecture #automation #e-commerce #multi #recommendation
- Multi-Agent Architecture for Automatic Recommendation System in E-Commerce (QL, RK, YM), pp. 265–270.
- ECIR-2003-TianC #collaboration #learning #rating #recommendation #similarity
- Learning User Similarity and Rating Style for Collaborative Recommendation (LFT, KWC), pp. 135–145.
- KDD-2003-Kamishima #collaboration #order #recommendation
- Nantonac collaborative filtering: recommendation based on order responses (TK), pp. 583–588.
- ICSE-2003-CubranicM #development #named #recommendation
- Hipikat: Recommending Pertinent Software Development Artifacts (DC, GCM), pp. 408–418.
- VLDB-2002-CosleyLP #framework #named #recommendation #testing #using
- REFEREE: An Open Framework for Practical Testing of Recommender Systems using ResearchIndex (DC, SL, DMP), pp. 35–46.
- STOC-2002-DrineasKR #recommendation
- Competitive recommendation systems (PD, IK, PR), pp. 82–90.
- CSCW-2002-McNeeACGLRKR #on the #recommendation #research
- On the recommending of citations for research papers (SMM, IA, DC, PG, SKL, AMR, JAK, JR), pp. 116–125.
- CAiSE-2002-PapadopoulosP #community #recommendation #semantics
- The Role of Semantic Relevance in Dynamic User Community Management and the Formulation of Recommendations (NP, DP), pp. 200–215.
- CIKM-2002-SchaferKR #integration #recommendation
- Meta-recommendation systems: user-controlled integration of diverse recommendations (JBS, JAK, JR), pp. 43–51.
- SIGIR-2002-ScheinPUP #metric #recommendation
- Methods and metrics for cold-start recommendations (AIS, AP, LHU, DMP), pp. 253–260.
- CIKM-2001-ChenC #music #recommendation
- A Music Recommendation System Based on Music Data Grouping and User Interests (HCC, ALPC), pp. 231–238.
- CIKM-2001-Karypis #algorithm #evaluation #recommendation
- Evaluation of Item-Based Top-N Recommendation Algorithms (GK), pp. 247–254.
- ICML-2001-Lee #collaboration #learning #recommendation
- Collaborative Learning and Recommender Systems (WSL), pp. 314–321.
- KDD-2001-Riedl #community #recommendation
- Recommender systems in commerce and community (JR), p. 15.
- CHI-2000-WoodruffGPCC #recommendation
- Enhancing a digital book with a reading recommender (AW, RG, JEP, EHhC, SKC), pp. 153–160.
- CSCW-2000-HerlockerKR #collaboration #recommendation
- Explaining collaborative filtering recommendations (JLH, JAK, JR), pp. 241–250.
- CSCW-2000-McDonaldA #architecture #flexibility #recommendation
- Expertise recommender: a flexible recommendation system and architecture (DWM, MSA), pp. 231–240.
- CIKM-2000-LavrenkoSLOJA #modelling #recommendation
- Language Models for Financial News Recommendation (VL, MDS, DL, PO, DJ, JA), pp. 389–396.
- KDD-2000-KittsFV #independence #named #performance #recommendation
- Cross-sell: a fast promotion-tunable customer-item recommendation method based on conditionally independent probabilities (BK, DF, MV), pp. 437–446.
- CSEET-1999-Tockey #recommendation
- Recommended Skills and Knowledge for Software Engineers (SRT), pp. 168–176.
- HCI-CCAD-1999-TrousseJK #approach #behaviour #recommendation #similarity #using
- Using user behaviour similarity for recommendation computation: the broadway approach (BT, MJ, RK), pp. 85–89.
- ITiCSE-WGR-1997-JoyceKGKKLLSW #design #guidelines #recommendation #repository
- Developing laboratories for the SIGCSE computing laboratory repository: guidelines, recommendations, and sample labs (report of the ITiCSE 1997 working group on designing laboratory materials for computing courses) (DTJ, DK, JGP, EBK, WK, CL, KL, ES, RAW), pp. 1–12.
- CHI-1995-HillSRF #community #recommendation
- Recommending and Evaluating Choices in a Virtual Community of Use (WCH, LS, MR, GWF), pp. 194–201.
- AdaEurope-1994-Gale #ada #development #recommendation
- Recommendations and Proposals for an Ada Strategy in the Space Software Development Environment (LPG), pp. 175–203.
- SEI-1992-MedairosCCK #re-engineering #recommendation
- Software Engineering Course Projects: Failures and Recommendations (SM, KWC, JSC, MK), pp. 324–338.
- CHI-1992-WhartonBJF #case study #experience #recommendation #user interface
- Applying cognitive walkthroughs to more complex user interfaces: experiences, issues, and recommendations (CW, JB, RJ, MF), pp. 381–388.
- SIGIR-1983-Somers #analysis #file system #recommendation #user interface
- The User View of File Management: Recommendations for a User Interface Based in an Analysis of UNIX File System Use (PS), p. 161.