Travelled to:
1 × Austria
1 × Belgium
1 × Cyprus
1 × Denmark
1 × Hungary
1 × Iceland
1 × Italy
1 × Norway
1 × Spain
1 × United Kingdom
2 × Portugal
2 × USA
Collaborated with:
J.Schwinghammer T.Streicher ∅ L.Birkedal H.Yang T.Altenkirch N.Charlton B.Horsfall M.Wirsing R.Hennicker F.Pottier K.Støvring J.Thamsborg
Talks about:
logic (7) higher (6) order (6) store (5) semant (4) model (3) hoar (3) function (2) program (2) verifi (2)
Person: Bernhard Reus
DBLP: Reus:Bernhard
Contributed to:
Wrote 14 papers:
- VMCAI-2012-CharltonHR #higher-order #named #source code #verification
- Crowfoot: A Verifier for Higher-Order Store Programs (NC, BH, BR), pp. 136–151.
- CSL-2011-ReusS #functional #logic #source code
- Relative Completeness for Logics of Functional Programs (BR, TS), pp. 470–480.
- POPL-2011-BirkedalRSSTY #modelling #recursion
- Step-indexed kripke models over recursive worlds (LB, BR, JS, KS, JT, HY), pp. 119–132.
- FoSSaCS-2010-SchwinghammerYBPR #semantics
- A Semantic Foundation for Hidden State (JS, HY, LB, FP, BR), pp. 2–17.
- CSL-2009-SchwinghammerBRY #higher-order #hoare
- Nested Hoare Triples and Frame Rules for Higher-Order Store (JS, LB, BR, HY), pp. 440–454.
- ICALP-B-2008-BirkedalRSY #higher-order #logic
- A Simple Model of Separation Logic for Higher-Order Store (LB, BR, JS, HY), pp. 348–360.
- CSL-2006-ReusS #higher-order #logic
- Separation Logic for Higher-Order Store (BR, JS), pp. 575–590.
- ESOP-2005-ReusS #logic #semantics
- Denotational Semantics for Abadi and Leino’s Logic of Objects (BR, JS), pp. 263–278.
- ICALP-2005-ReusS #higher-order #hoare #logic
- About Hoare Logics for Higher-Order Store (BR, TS), pp. 1337–1348.
- CSL-2003-Reus #composition #logic #semantics
- Modular Semantics and Logics of Classes (BR), pp. 456–469.
- LICS-2002-ReusS #calculus #logic #semantics
- Semantics and Logic of Object Calculi (BR, TS), p. 113–?.
- FASE-2001-ReusWH #calculus #design #hoare #java #modelling #ocl #verification
- A Hoare Calculus for Verifying Java Realizations of OCL-Constrained Design Models (BR, MW, RH), pp. 300–317.
- CSL-1999-AltenkirchR #induction #monad #using
- Monadic Presentations of λ Terms Using Generalized Inductive Types (TA, BR), pp. 453–468.
- PLILP-1992-Reus #algebra #higher-order #implementation #specification
- Implementing Higher-Order Functions in an Algebraic Specification Language with Narrowing (BR), pp. 483–484.