Travelled to:
1 × Austria
1 × Canada
1 × Spain
1 × Turkey
1 × USA
2 × United Kingdom
3 × China
Collaborated with:
J.Ortegon-Aguilar R.Machucho-Cadena C.López-Franco J.Rivera-Rovelo G.Sommer J.Lasenby E.Vázquez-Santacruz L.Falcón-Morales L.Reyes A.Avalos R.Vallejo ∅ K.Daniilidis H.Casarrubias-Vargas A.Petrilli-Barceló S.d.l.Cruz-Rodríguez S.Buchholz D.I.Gonzalez-Aguirre T.Asfour R.Dillmann A.N.Lasenby
Talks about:
geometr (13) algebra (11) use (10) approach (5) conform (4) vision (4) comput (4) track (4) omnidirect (3) framework (3)
Person: Eduardo Bayro-Corrochano
DBLP: Bayro-Corrochano:Eduardo
Contributed to:
Wrote 22 papers:
- ICPR-2010-Casarrubias-VargasPB #machine learning #navigation #visual notation
- EKF-SLAM and Machine Learning Techniques for Visual Robot Navigation (HCV, APB, EBC), pp. 396–399.
- ICPR-2010-Machucho-CadenaB #3d #algebra #geometry #re-engineering #using
- 3D Reconstruction of Tumors for Applications in Laparoscopy Using Conformal Geometric Algebra (RMC, EBC), pp. 2532–2535.
- ICPR-2010-Vazquez-SantacruzB #geometry #network
- A Geometric Radial Basis Function Network for Robot Perception and Action (EVS, EBC), pp. 2961–2964.
- ICPR-2008-Falcon-MoralesB #algebra #geometry
- Radon transform and Conformal Geometric Algebra with lines (LFM, EBC), pp. 1–4.
- ICPR-2008-Gonzalez-AguirreABD #geometry #graph #modelling #self #using #visual notation
- Model-based visual self-localization using geometry and graphs (DIGA, TA, EBC, RD), pp. 1–5.
- ICPR-2008-Machucho-CadenaCB #using
- Rendering of brain tumors using endoneurosonography (RMC, SdlCR, EBC), pp. 1–4.
- ICPR-v1-2006-Bayro-CorrochanoM #algebra #fuzzy #geometry #logic #using
- Object Manipulation using Fuzzy Logic and Geometric Algebra (EBC, RMC), pp. 1120–1123.
- ICPR-v1-2006-Lopez-FrancoB #algebra #geometry #invariant #navigation #using
- Omnidirectional Vision and Invariant Theory for Robot Navigation Using Conformal Geometric Algebra (CLF, EBC), pp. 570–573.
- ICPR-v3-2006-Ortegon-AguilarB
- Omnidirectional Vision Tracking with Particle Filter (JOA, EBC), pp. 1115–1118.
- ICPR-v4-2006-Rivera-RoveloB #algebra #framework #geometry #realtime #using
- Non-Rigid Alignment and Real-Time Tracking Using the Geometric Algebra Framework (JRR, EBC), pp. 675–678.
- ICPR-v2-2004-Bayro-CorrochanoO #algebra
- Lie Algebra Template Tracking (EBC, JOA), pp. 56–59.
- ICPR-v2-2004-Ortegon-AguilarB #3d #algebra #approach #estimation
- Monocular Lie Algebra Approach for 3D Motion Estimation (JOA, EBC), pp. 200–203.
- ICPR-v4-2004-Lopez-FrancoB #algebra #framework #geometry #using
- Unified Model for Omnidirectional Vision Using the Conformal Geometric Algebra Framework (CLF, EBC), pp. 48–51.
- ICPR-v4-2004-ReyesB #approach #geometry #re-engineering
- Geometric Approach for Simultaneous Projective Reconstruction of Points, Lines, Planes, Quadrics, Plane Conics and Degenerate Quadrics (LR, EBC), pp. 60–63.
- ICPR-v4-2004-Rivera-RoveloB #approach #geometry
- Non-Rigid Registration and Geometric Approach for Tracking in Neurosurgery (JRR, EBC), pp. 717–720.
- ICPR-v1-2002-Bayro-CorrochanoA #approach #detection #geometry
- Geometric Approach for Pose Detection of Moving Human Heads (EBC, AA), pp. 636–639.
- ICPR-v1-2002-Bayro-CorrochanoV #estimation #geometry #pattern matching #pattern recognition #recognition
- Geometric Neurocomputing for Pattern Recognition and Pose Estimation (EBC, RV), pp. 41–44.
- ICPR-v1-2000-Bayro-Corrochano #algebra #invariant #using
- Computing Depth, Shape and Motion Using Invariants and Incidence Algebra (EBC), pp. 1881–1884.
- ICPR-1996-Bayro-CorrochanoBS #algebra #geometry #network #self #using
- A new self-organizing neural network using geometric algebra (EBC, SB, GS), pp. 555–559.
- ICPR-1996-Bayro-CorrochanoLS #algebra #framework #geometry #using
- Geometric algebra: a framework for computing point and line correspondences and projective structure using n uncalibrated cameras (EBC, JL, GS), pp. 334–338.
- ICPR-1996-DaniilidisB #approach
- The dual quaternion approach to hand-eye calibration (KD, EBC), pp. 318–322.
- ICPR-1996-LasenbyBLS #invariant
- A new methodology for computing invariants in computer vision (JL, EBC, ANL, GS), pp. 393–397.