Travelled to:
1 × Austria
1 × Spain
1 × Turkey
1 × United Kingdom
2 × Canada
2 × USA
Collaborated with:
H.J.Ritter A.Saalbach B.Kaiser J.C.Rocholl S.Klenk D.Lücke H.Bekel I.Bax J.Moehrmann S.Bernstein T.Schlegel G.Werner H.Kobdani H.Schütze A.Burkovski W.Kessler
Talks about:
recognit (3) object (2) neural (2) larg (2) data (2) set (2) architectur (1) represent (1) parametr (1) manifold (1)
Person: Gunther Heidemann
DBLP: Heidemann:Gunther
Contributed to:
Wrote 8 papers:
- HCI-DDA-2011-MoehrmannBSWH #image #scalability #set #usability
- Improving the Usability of Hierarchical Representations for Interactively Labeling Large Image Data Sets (JM, SB, TS, GW, GH), pp. 618–627.
- CIKM-2010-KobdaniSBKH #natural language #re-engineering #relational
- Relational feature engineering of natural language processing (HK, HS, AB, WK, GH), pp. 1705–1708.
- ICPR-2010-RochollKH #mobile #recognition #robust
- Robust 1D Barcode Recognition on Mobile Devices (JCR, SK, GH), pp. 2712–2715.
- ICPR-2008-KaiserH #analysis #detection
- Qualitative analysis of spatio-temporal event detectors (BK, GH), pp. 1–4.
- ICPR-v4-2004-HeidemannBBS #clustering #gesture #recognition #scalability #self #set #user interface #visual notation
- Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets (GH, HB, IB, AS), pp. 487–490.
- ICPR-v2-2002-SaalbachHR #representation
- Representing Object Manifolds by Parametrized SOMs (AS, GH, HJR), pp. 184–187.
- ICPR-v1-2000-HeidemannLR #classification #network #visual notation
- A System for Various Visual Classification Tasks Based on Neural Networks (GH, DL, HJR), pp. 1009–1012.
- ICPR-1996-HeidemannR #3d #architecture #recognition #using
- A neural 3-D object recognition architecture using optimized Gabor filters (GH, HJR), pp. 70–74.