Travelled to:
1 × Australia
1 × Canada
1 × Chile
1 × Ireland
1 × Russia
1 × Singapore
1 × The Netherlands
1 × United Kingdom
2 × China
4 × USA
Collaborated with:
X.Cheng Y.Lan S.Niu G.Xu X.Zhu P.Du X.Yan P.Wang H.Li C.Fan J.Xu S.Wan L.Bai J.Zhang H.Shen L.Xia X.Geng Y.Zhu W.Nejdl Z.Lin S.Liu Y.Wang
Talks about:
recommend (8) queri (8) rank (7) model (6) learn (6) data (4) factor (3) relev (3) high (3) top (3)
Person: Jiafeng Guo
DBLP: Guo:Jiafeng
Contributed to:
Wrote 21 papers:
- SIGIR-2015-WangGLXWC #learning #recommendation #representation
- Learning Hierarchical Representation Model for NextBasket Recommendation (PW, JG, YL, JX, SW, XC), pp. 403–412.
- SIGIR-2015-XiaXLGC #evaluation #learning #metric #optimisation
- Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures (LX, JX, YL, JG, XC), pp. 113–122.
- CIKM-2014-WangGL #modelling #personalisation #recommendation #transaction
- Modeling Retail Transaction Data for Personalized Shopping Recommendation (PW, JG, YL), pp. 1979–1982.
- ECIR-2014-BaiGLC #documentation #linear #matrix #modelling
- Local Linear Matrix Factorization for Document Modeling (LB, JG, YL, XC), pp. 398–411.
- SIGIR-2014-NiuLGCG #data analysis #learning #rank #robust #what
- What makes data robust: a data analysis in learning to rank (SN, YL, JG, XC, XG), pp. 1191–1194.
- SIGIR-2014-ZhuLGCN #learning
- Learning for search result diversification (YZ, YL, JG, XC, SN), pp. 293–302.
- CIKM-2013-LanNGC #question #ranking
- Is top-k sufficient for ranking? (YL, SN, JG, XC), pp. 1261–1270.
- ECIR-2013-ZhuGCLN #graph #query #recommendation
- Recommending High Utility Query via Session-Flow Graph (XZ, JG, XC, YL, WN), pp. 642–655.
- SIGIR-2013-FanLGLC #collaboration #recommendation
- Collaborative factorization for recommender systems (CF, YL, JG, ZL, XC), pp. 949–953.
- SIGIR-2013-WanLGFC #recommendation #social #social media
- Informational friend recommendation in social media (SW, YL, JG, CF, XC), pp. 1045–1048.
- CIKM-2012-NiuLGC #probability #problem #ranking
- A new probabilistic model for top-k ranking problem (SN, YL, JG, XC), pp. 2519–2522.
- CIKM-2012-YanGLCW #clustering #matrix #using
- Clustering short text using Ncut-weighted non-negative matrix factorization (XY, JG, SL, XC, YW), pp. 2259–2262.
- CIKM-2012-ZhuGCL #behaviour #mining #query #recommendation
- More than relevance: high utility query recommendation by mining users’ search behaviors (XZ, JG, XC, YL), pp. 1814–1818.
- SIGIR-2012-NiuGLC #evaluation #learning #rank #ranking
- Top-k learning to rank: labeling, ranking and evaluation (SN, JG, YL, XC), pp. 751–760.
- CIKM-2011-GuoCXZ #query #similarity
- Intent-aware query similarity (JG, XC, GX, XZ), pp. 259–268.
- CIKM-2011-YanGC #higher-order #learning #query #recommendation
- Context-aware query recommendation by learning high-order relation in query logs (XY, JG, XC), pp. 2073–2076.
- SIGIR-2011-DuGC #network
- Decayed DivRank: capturing relevance, diversity and prestige in information networks (PD, JG, XC), pp. 1239–1240.
- CIKM-2010-DuGZC #ranking #summary
- Manifold ranking with sink points for update summarization (PD, JG, JZ, XC), pp. 1757–1760.
- CIKM-2010-GuoCXS #approach #query #recommendation #social
- A structured approach to query recommendation with social annotation data (JG, XC, GX, HS), pp. 619–628.
- SIGIR-2009-GuoXCL #query #recognition
- Named entity recognition in query (JG, GX, XC, HL), pp. 267–274.
- SIGIR-2008-GuoXLC #query #refinement
- A unified and discriminative model for query refinement (JG, GX, HL, XC), pp. 379–386.