BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Canada
1 × Chile
1 × Ireland
1 × Russia
1 × Singapore
1 × The Netherlands
1 × United Kingdom
2 × China
4 × USA
Collaborated with:
X.Cheng Y.Lan S.Niu G.Xu X.Zhu P.Du X.Yan P.Wang H.Li C.Fan J.Xu S.Wan L.Bai J.Zhang H.Shen L.Xia X.Geng Y.Zhu W.Nejdl Z.Lin S.Liu Y.Wang
Talks about:
recommend (8) queri (8) rank (7) model (6) learn (6) data (4) factor (3) relev (3) high (3) top (3)

Person: Jiafeng Guo

DBLP DBLP: Guo:Jiafeng

Contributed to:

SIGIR 20152015
CIKM 20142014
ECIR 20142014
SIGIR 20142014
CIKM 20132013
ECIR 20132013
SIGIR 20132013
CIKM 20122012
SIGIR 20122012
CIKM 20112011
SIGIR 20112011
CIKM 20102010
SIGIR 20092009
SIGIR 20082008

Wrote 21 papers:

SIGIR-2015-WangGLXWC #learning #recommendation #representation
Learning Hierarchical Representation Model for NextBasket Recommendation (PW, JG, YL, JX, SW, XC), pp. 403–412.
SIGIR-2015-XiaXLGC #evaluation #learning #metric #optimisation
Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures (LX, JX, YL, JG, XC), pp. 113–122.
CIKM-2014-WangGL #modelling #personalisation #recommendation #transaction
Modeling Retail Transaction Data for Personalized Shopping Recommendation (PW, JG, YL), pp. 1979–1982.
ECIR-2014-BaiGLC #documentation #linear #matrix #modelling
Local Linear Matrix Factorization for Document Modeling (LB, JG, YL, XC), pp. 398–411.
SIGIR-2014-NiuLGCG #data analysis #learning #rank #robust #what
What makes data robust: a data analysis in learning to rank (SN, YL, JG, XC, XG), pp. 1191–1194.
SIGIR-2014-ZhuLGCN #learning
Learning for search result diversification (YZ, YL, JG, XC, SN), pp. 293–302.
CIKM-2013-LanNGC #question #ranking
Is top-k sufficient for ranking? (YL, SN, JG, XC), pp. 1261–1270.
ECIR-2013-ZhuGCLN #graph #query #recommendation
Recommending High Utility Query via Session-Flow Graph (XZ, JG, XC, YL, WN), pp. 642–655.
SIGIR-2013-FanLGLC #collaboration #recommendation
Collaborative factorization for recommender systems (CF, YL, JG, ZL, XC), pp. 949–953.
SIGIR-2013-WanLGFC #recommendation #social #social media
Informational friend recommendation in social media (SW, YL, JG, CF, XC), pp. 1045–1048.
CIKM-2012-NiuLGC #probability #problem #ranking
A new probabilistic model for top-k ranking problem (SN, YL, JG, XC), pp. 2519–2522.
CIKM-2012-YanGLCW #clustering #matrix #using
Clustering short text using Ncut-weighted non-negative matrix factorization (XY, JG, SL, XC, YW), pp. 2259–2262.
CIKM-2012-ZhuGCL #behaviour #mining #query #recommendation
More than relevance: high utility query recommendation by mining users’ search behaviors (XZ, JG, XC, YL), pp. 1814–1818.
SIGIR-2012-NiuGLC #evaluation #learning #rank #ranking
Top-k learning to rank: labeling, ranking and evaluation (SN, JG, YL, XC), pp. 751–760.
CIKM-2011-GuoCXZ #query #similarity
Intent-aware query similarity (JG, XC, GX, XZ), pp. 259–268.
CIKM-2011-YanGC #higher-order #learning #query #recommendation
Context-aware query recommendation by learning high-order relation in query logs (XY, JG, XC), pp. 2073–2076.
SIGIR-2011-DuGC #network
Decayed DivRank: capturing relevance, diversity and prestige in information networks (PD, JG, XC), pp. 1239–1240.
CIKM-2010-DuGZC #ranking #summary
Manifold ranking with sink points for update summarization (PD, JG, JZ, XC), pp. 1757–1760.
CIKM-2010-GuoCXS #approach #query #recommendation #social
A structured approach to query recommendation with social annotation data (JG, XC, GX, HS), pp. 619–628.
SIGIR-2009-GuoXCL #query #recognition
Named entity recognition in query (JG, GX, XC, HL), pp. 267–274.
SIGIR-2008-GuoXLC #query #refinement
A unified and discriminative model for query refinement (JG, GX, HL, XC), pp. 379–386.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.