BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Canada
1 × Chile
1 × China
1 × Finland
1 × Ireland
1 × Italy
1 × Russia
1 × The Netherlands
3 × USA
Collaborated with:
J.Guo X.Cheng S.Niu P.Wang X.Zhu T.Liu Z.Ma H.Li C.Fan J.Xu S.Wan L.Bai L.Xia X.Geng Y.Zhu W.Nejdl Z.Lin T.Qin X.Yuan C.Wu Z.Wang J.Li P.Yew J.Huang X.Feng Y.Chen Y.Guan
Talks about:
learn (7) rank (7) recommend (6) model (5) queri (3) data (3) top (3) general (2) analysi (2) search (2)

Person: Yanyan Lan

DBLP DBLP: Lan:Yanyan

Contributed to:

ICSE 20152015
SIGIR 20152015
CIKM 20142014
ECIR 20142014
SIGIR 20142014
CIKM 20132013
ECIR 20132013
SIGIR 20132013
CIKM 20122012
SIGIR 20122012
ICML 20092009
ICML 20082008

Wrote 16 papers:

ICSE-v1-2015-YuanWWLYHFLCG #concurrent #debugging #named #using
ReCBuLC: Reproducing Concurrency Bugs Using Local Clocks (XY, CW, ZW, JL, PCY, JH, XF, YL, YC, YG), pp. 824–834.
SIGIR-2015-WangGLXWC #learning #recommendation #representation
Learning Hierarchical Representation Model for NextBasket Recommendation (PW, JG, YL, JX, SW, XC), pp. 403–412.
SIGIR-2015-XiaXLGC #evaluation #learning #metric #optimisation
Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures (LX, JX, YL, JG, XC), pp. 113–122.
CIKM-2014-WangGL #modelling #personalisation #recommendation #transaction
Modeling Retail Transaction Data for Personalized Shopping Recommendation (PW, JG, YL), pp. 1979–1982.
ECIR-2014-BaiGLC #documentation #linear #matrix #modelling
Local Linear Matrix Factorization for Document Modeling (LB, JG, YL, XC), pp. 398–411.
SIGIR-2014-NiuLGCG #data analysis #learning #rank #robust #what
What makes data robust: a data analysis in learning to rank (SN, YL, JG, XC, XG), pp. 1191–1194.
SIGIR-2014-ZhuLGCN #learning
Learning for search result diversification (YZ, YL, JG, XC, SN), pp. 293–302.
CIKM-2013-LanNGC #question #ranking
Is top-k sufficient for ranking? (YL, SN, JG, XC), pp. 1261–1270.
ECIR-2013-ZhuGCLN #graph #query #recommendation
Recommending High Utility Query via Session-Flow Graph (XZ, JG, XC, YL, WN), pp. 642–655.
SIGIR-2013-FanLGLC #collaboration #recommendation
Collaborative factorization for recommender systems (CF, YL, JG, ZL, XC), pp. 949–953.
SIGIR-2013-WanLGFC #recommendation #social #social media
Informational friend recommendation in social media (SW, YL, JG, CF, XC), pp. 1045–1048.
CIKM-2012-NiuLGC #probability #problem #ranking
A new probabilistic model for top-k ranking problem (SN, YL, JG, XC), pp. 2519–2522.
CIKM-2012-ZhuGCL #behaviour #mining #query #recommendation
More than relevance: high utility query recommendation by mining users’ search behaviors (XZ, JG, XC, YL), pp. 1814–1818.
SIGIR-2012-NiuGLC #evaluation #learning #rank #ranking
Top-k learning to rank: labeling, ranking and evaluation (SN, JG, YL, XC), pp. 751–760.
ICML-2009-LanLML #algorithm #analysis #ranking
Generalization analysis of listwise learning-to-rank algorithms (YL, TYL, ZM, HL), pp. 577–584.
ICML-2008-LanLQML #learning #rank
Query-level stability and generalization in learning to rank (YL, TYL, TQ, ZM, HL), pp. 512–519.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.