Travelled to:
1 × Finland
1 × Iceland
1 × Japan
1 × Taiwan
1 × USA
2 × France
2 × Germany
2 × Spain
Collaborated with:
J.Esparza S.Kiefer M.Schlund ∅ G.Bachmeier P.J.Meyer S.Sickert C.Cheng A.Knoll C.Buckl T.Brázdil
Talks about:
newton (4) method (4) semir (4) converg (2) continu (2) analysi (2) comput (2) equat (2) superword (1) algorithm (1)
Person: Michael Luttenberger
DBLP: Luttenberger:Michael
Contributed to:
Wrote 12 papers:
- LATA-2015-BachmeierLS #automaton #complexity #finite
- Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity (GB, ML, MS), pp. 473–485.
- CIAA-2014-EsparzaLS #equation #fixpoint #named
- FPsolve: A Generic Solver for Fixpoint Equations over Semirings (JE, ML, MS), pp. 1–15.
- LATA-2014-EsparzaLS
- A Brief History of Strahler Numbers (JE, ML, MS), pp. 1–13.
- LATA-2013-LuttenbergerS #commutative #convergence
- Convergence of Newton’s Method over Commutative Semirings (ML, MS), pp. 407–418.
- TACAS-2011-ChengKLB #algorithm #framework #game studies #platform #research
- GAVS+: An Open Platform for the Research of Algorithmic Game Solving (CHC, AK, ML, CB), pp. 258–261.
- ICALP-v2-2010-BrazdilEKL #scheduling
- Space-Efficient Scheduling of Stochastically Generated Tasks (TB, JE, SK, ML), pp. 539–550.
- DLT-2008-EsparzaKL #analysis #fixpoint
- Derivation Tree Analysis for Accelerated Fixed-Point Computation (JE, SK, ML), pp. 301–313.
- ICALP-B-2008-EsparzaKL
- Newton’s Method for ω-Continuous Semirings (JE, SK, ML), pp. 14–26.
- DLT-2007-EsparzaKL
- An Extension of Newton’s Method to ω-Continuous Semirings (JE, SK, ML), pp. 157–168.
- STOC-2007-KieferLE #convergence #equation #on the #polynomial
- On the convergence of Newton’s method for monotone systems of polynomial equations (SK, ML, JE), pp. 217–226.
- CIAA-2006-Luttenberger #analysis #integer #reachability #source code
- Reachability Analysis of Procedural Programs with Affine Integer Arithmetic (ML), pp. 281–282.
- CAV-2018-MeyerSL #exclamation #named #synthesis
- Strix: Explicit Reactive Synthesis Strikes Back! (PJM, SS, ML), pp. 578–586.