Travelled to:
1 × Finland
1 × Germany
1 × Israel
2 × Italy
4 × USA
Collaborated with:
J.Y.Halpern M.Goldszmidt ∅ N.Slonim N.Tishby T.J.Lee T.El-Hay I.Cohn R.Kupferman S.Shalev-Shwartz S.Dubnov Y.Singer L.Getoor D.Koller B.Taskar
Talks about:
belief (4) network (3) continu (3) learn (3) bayesian (2) attribut (2) discret (2) classif (2) revis (2) model (2)
Person: Nir Friedman
DBLP: Friedman:Nir
Contributed to:
Wrote 11 papers:
- ICML-2010-El-HayCFK
- Continuous-Time Belief Propagation (TEH, IC, NF, RK), pp. 343–350.
- SIGIR-2002-Shalev-ShwartzDFS #modelling #query #robust
- Robust temporal and spectral modeling for query By melody (SSS, SD, NF, YS), pp. 331–338.
- SIGIR-2002-SlonimFT #classification #documentation #using
- Unsupervised document classification using sequential information maximization (NS, NF, NT), pp. 129–136.
- ICML-2001-GetoorFKT #learning #modelling #probability #relational
- Learning Probabilistic Models of Relational Structure (LG, NF, DK, BT), pp. 170–177.
- LICS-1999-HalpernF #metric #overview #perspective #reasoning
- Plausibility Measures and Default Reasoning: An Overview (JYH, NF), pp. 130–135.
- ICML-1998-FriedmanGL #classification #network #parametricity
- Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting (NF, MG, TJL), pp. 179–187.
- ICML-1997-Friedman #learning #network
- Learning Belief Networks in the Presence of Missing Values and Hidden Variables (NF), pp. 125–133.
- ICML-1996-FriedmanG #learning #network
- Discretizing Continuous Attributes While Learning Bayesian Networks (NF, MG), pp. 157–165.
- KR-1996-FriedmanH
- Belief Revision: A Critique (NF, JYH), pp. 421–431.
- KR-1994-FriedmanH #framework #knowledge-based
- A Knowledge-Based Framework for Belief Change, Part II: Revision and Update (NF, JYH), pp. 190–201.
- KR-1994-FriedmanH94a #complexity #logic #on the
- On the Complexity of Conditional Logics (NF, JYH), pp. 202–213.