508 papers:
- CASE-2015-SabbaghiHD #3d #modelling #quality
- Bayesian additive modeling for quality control of 3D printed products (AS, QH, TD), pp. 906–911.
- CASE-2015-SterlingSZC #algorithm #optimisation #parametricity #process
- Welding parameter optimization based on Gaussian process regression Bayesian optimization algorithm (DS, TS, YZ, HC), pp. 1490–1496.
- DAC-2015-HuangFYZL #estimation #multi #performance
- Efficient multivariate moment estimation via Bayesian model fusion for analog and mixed-signal circuits (QH, CF, FY, XZ, XL), p. 6.
- DATE-2015-FangHYZLG #estimation #fault #performance
- Efficient bit error rate estimation for high-speed link by Bayesian model fusion (CF, QH, FY, XZ, XL, CG), pp. 1024–1029.
- DATE-2015-LiaperdosSATAL #deployment #performance #using
- Fast deployment of alternate analog test using Bayesian model fusion (JL, HGDS, LA, YT, AA, XL), pp. 1030–1035.
- SIGMOD-2015-YangSN #correlation #difference #privacy
- Bayesian Differential Privacy on Correlated Data (BY, IS, HN), pp. 747–762.
- ICML-2015-BenavoliCMZ #algorithm #parametricity
- A Bayesian nonparametric procedure for comparing algorithms (AB, GC, FM, MZ), pp. 1264–1272.
- ICML-2015-DasBB #modelling #order #parametricity
- Ordered Stick-Breaking Prior for Sequential MCMC Inference of Bayesian Nonparametric Models (MKD, TB, CB), pp. 550–559.
- ICML-2015-Hernandez-Lobato15a #constraints #optimisation #predict
- Predictive Entropy Search for Bayesian Optimization with Unknown Constraints (JMHL, MAG, MWH, RPA, ZG), pp. 1699–1707.
- ICML-2015-Hernandez-Lobato15b #learning #network #probability #scalability
- Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks (JMHL, RA), pp. 1861–1869.
- ICML-2015-HugginsT
- Risk and Regret of Hierarchical Bayesian Learners (JH, JT), pp. 1442–1451.
- ICML-2015-KandasamySP #modelling #optimisation
- High Dimensional Bayesian Optimisation and Bandits via Additive Models (KK, JGS, BP), pp. 295–304.
- ICML-2015-KusnerGGW #optimisation
- Differentially Private Bayesian Optimization (MJK, JRG, RG, KQW), pp. 918–927.
- ICML-2015-MatthewCYW #empirical
- Bayesian and Empirical Bayesian Forests (TM, CSC, JY, MW), pp. 967–976.
- ICML-2015-RajanHSFJ #locality #multi
- Bayesian Multiple Target Localization (PR, WH, RS, PIF, BJ), pp. 1945–1953.
- ICML-2015-SamoR #parametricity #process #scalability
- Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes (YLKS, SR), pp. 2227–2236.
- ICML-2015-SnoekRSKSSPPA #network #optimisation #scalability #using
- Scalable Bayesian Optimization Using Deep Neural Networks (JS, OR, KS, RK, NS, NS, MMAP, P, RPA), pp. 2171–2180.
- ICML-2015-Suzuki #convergence
- Convergence rate of Bayesian tensor estimator and its minimax optimality (TS), pp. 1273–1282.
- ICML-2015-WangZ #clustering #named #parametricity
- DP-space: Bayesian Nonparametric Subspace Clustering with Small-variance Asymptotics (YW, JZ), pp. 862–870.
- ICML-2015-ZhaoMP #network #on the
- On the Relationship between Sum-Product Networks and Bayesian Networks (HZ, MM, PP), pp. 116–124.
- KDD-2015-AhnKLRW #distributed #matrix #probability #scalability #using
- Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC (SA, AK, NL, SR, MW), pp. 9–18.
- KDD-2015-ScheinPBW #multi
- Bayesian Poisson Tensor Factorization for Inferring Multilateral Relations from Sparse Dyadic Event Counts (AS, JWP, DMB, HMW), pp. 1045–1054.
- KDD-2015-ZhangW #recommendation
- A Collective Bayesian Poisson Factorization Model for Cold-start Local Event Recommendation (WZ, JW), pp. 1455–1464.
- MLDM-2015-KrasotkinaM #approach #optimisation #ranking
- A Bayesian Approach to Sparse Learning-to-Rank for Search Engine Optimization (OK, VM), pp. 382–394.
- MLDM-2015-KrasotkinaM15a #analysis #approach
- A Bayesian Approach to Sparse Cox Regression in High-Dimentional Survival Analysis (OK, VM), pp. 425–437.
- RecSys-2015-GuoD #approach #bias #category theory
- Uncovering Systematic Bias in Ratings across Categories: a Bayesian Approach (FG, DBD), pp. 317–320.
- SIGIR-2015-GrotovWR #comparison #interactive
- Bayesian Ranker Comparison Based on Historical User Interactions (AG, SW, MdR), pp. 273–282.
- MoDELS-2015-LuddeckeSSS #modelling #network #using
- Modeling user intentions for in-car infotainment systems using Bayesian networks (DL, CS, JS, IS), pp. 378–385.
- OOPSLA-2015-OhYY #adaptation #learning #optimisation #program analysis
- Learning a strategy for adapting a program analysis via bayesian optimisation (HO, HY, KY), pp. 572–588.
- SAC-2015-Grossl #modelling #network
- Modeling dependable systems with continuous time Bayesian networks (MG), pp. 436–441.
- SAC-2015-JeongYAYP #algorithm #interactive #network #search-based #using
- Inference of disease-specific gene interaction network using a Bayesian network learned by genetic algorithm (DJ, YY, JA, YY, SP), pp. 47–53.
- SAC-2015-PerkusichMSGAP #approach #metric #network
- A Bayesian network approach to assist on the interpretation of software metrics (MP, AM, LCeS, KCG, HOdA, AP), pp. 1498–1503.
- DAC-2014-FangYZL #estimation #named #performance
- BMF-BD: Bayesian Model Fusion on Bernoulli Distribution for Efficient Yield Estimation of Integrated Circuits (CF, FY, XZ, XL), p. 6.
- DAC-2014-YuSHEAB #metric #parametricity #using
- Remembrance of Transistors Past: Compact Model Parameter Extraction Using Bayesian Inference and Incomplete New Measurements (LY, SS, CH, IAME, DAA, DSB), p. 6.
- SIGMOD-2014-ZhangCPSX #named #network
- PrivBayes: private data release via bayesian networks (JZ, GC, CMP, DS, XX), pp. 1423–1434.
- DHM-2014-ZhangGBD #industrial #network
- Application of Bayesian Networks in Consumer Service Industry and Healthcare (LZ, YG, BB, VGD), pp. 484–495.
- ICEIS-v2-2014-LiuDT #network #reliability
- Auditing Data Reliability in International Logistics — An Application of Bayesian Networks (LL, HAMD, RT), pp. 707–712.
- ICML-c1-2014-LacosteMLL #learning
- Agnostic Bayesian Learning of Ensembles (AL, MM, FL, HL), pp. 611–619.
- ICML-c1-2014-MeiZZ #first-order #logic #modelling #robust
- Robust RegBayes: Selectively Incorporating First-Order Logic Domain Knowledge into Bayesian Models (SM, JZ, JZ), pp. 253–261.
- ICML-c1-2014-NguyenPNVB #clustering #multi #parametricity
- Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts (TVN, DQP, XN, SV, HB), pp. 288–296.
- ICML-c1-2014-ShiZ #learning #online
- Online Bayesian Passive-Aggressive Learning (TS, JZ), pp. 378–386.
- ICML-c2-2014-BaiLS #classification #framework #online
- A Bayesian Framework for Online Classifier Ensemble (QB, HL, SS), pp. 1584–1592.
- ICML-c2-2014-BarberW #difference #equation #estimation #process
- Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations (DB, YW), pp. 1485–1493.
- ICML-c2-2014-BenavoliCMZR #process
- A Bayesian Wilcoxon signed-rank test based on the Dirichlet process (AB, GC, FM, MZ, FR), pp. 1026–1034.
- ICML-c2-2014-Chapados #effectiveness #modelling
- Effective Bayesian Modeling of Groups of Related Count Time Series (NC), pp. 1395–1403.
- ICML-c2-2014-GardnerKZWC #constraints #difference #optimisation
- Bayesian Optimization with Inequality Constraints (JRG, MJK, ZEX, KQW, JC), pp. 937–945.
- ICML-c2-2014-JohnsonW #modelling #probability
- Stochastic Variational Inference for Bayesian Time Series Models (MJ, ASW), pp. 1854–1862.
- ICML-c2-2014-LiZ0 #learning #multi
- Bayesian Max-margin Multi-Task Learning with Data Augmentation (CL, JZ, JC), pp. 415–423.
- ICML-c2-2014-MinskerSLD #robust #scalability
- Scalable and Robust Bayesian Inference via the Median Posterior (SM, SS, LL, DBD), pp. 1656–1664.
- ICML-c2-2014-PentinaL #bound #learning
- A PAC-Bayesian bound for Lifelong Learning (AP, CHL), pp. 991–999.
- ICML-c2-2014-RaiWGCDC #composition #multi #rank #scalability
- Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors (PR, YW, SG, GC, DBD, LC), pp. 1800–1808.
- ICML-c2-2014-SnoekSZA #optimisation
- Input Warping for Bayesian Optimization of Non-Stationary Functions (JS, KS, RSZ, RPA), pp. 1674–1682.
- ICPR-2014-ChamroukhiBG #clustering #parametricity
- Bayesian Non-parametric Parsimonious Gaussian Mixture for Clustering (FC, MB, HG), pp. 1460–1465.
- ICPR-2014-ChironGM #behaviour #parametricity #using
- Discovering Emergent Behaviors from Tracks Using Hierarchical Non-parametric Bayesian Methods (GC, PGK, MM), pp. 2185–2190.
- ICPR-2014-Filippone #classification #process #pseudo
- Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC (MF), pp. 614–619.
- ICPR-2014-KumarG #documentation #keyword #learning
- Bayesian Active Learning for Keyword Spotting in Handwritten Documents (GK, VG), pp. 2041–2046.
- ICPR-2014-KunwarPB #network #online #recognition
- Semi-supervised Online Bayesian Network Learner for Handwritten Characters Recognition (RK, UP, MB), pp. 3104–3109.
- ICPR-2014-LiRPV #modelling #topic #using
- Regularizing Topic Discovery in EMRs with Side Information by Using Hierarchical Bayesian Models (CL, SR, DQP, SV), pp. 1307–1312.
- ICPR-2014-NguyenGVP #framework #parametricity #process #recognition #using
- A Bayesian Nonparametric Framework for Activity Recognition Using Accelerometer Data (TN, SKG, SV, DQP), pp. 2017–2022.
- ICPR-2014-NieJ #learning #linear #using
- Feature Learning Using Bayesian Linear Regression Model (SN, QJ), pp. 1502–1507.
- ICPR-2014-OHarneyMRCSCBF #kernel #learning #multi #pseudo
- Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data (ADO, AM, KR, KC, ABS, AC, CB, MF), pp. 3185–3190.
- ICPR-2014-OsogamiK
- A Hierarchical Bayesian Choice Model with Visibility (TO, TK), pp. 3618–3623.
- ICPR-2014-QuLWXT #framework #robust #set
- Robust Point Set Matching under Variational Bayesian Framework (HBQ, JCL, JQW, LX, HJT), pp. 58–63.
- ICPR-2014-XingY #categorisation #image #parametricity #representation #scalability
- Large Scale Image Categorization in Sparse Nonparametric Bayesian Representation (SX, NHCY), pp. 1365–1370.
- ICPR-2014-XuS #learning #network #using
- Bayesian Network Structure Learning Using Causality (ZX, SNS), pp. 3546–3551.
- ICPR-2014-YamadaM #approach #behaviour #using
- Estimating Driver Awareness of Crossing Pedestrians While Turning Left Based on Vehicle Behavior Using Bayesian Approach (KY, TM), pp. 1898–1903.
- KDD-2014-EmbarPB #framework #network
- A bayesian framework for estimating properties of network diffusions (VRE, RKP, IB), pp. 1216–1225.
- KDD-2014-VasishtDVK #classification #learning #multi
- Active learning for sparse bayesian multilabel classification (DV, ACD, MV, AK), pp. 472–481.
- MLDM-2014-FuMD #classification #multi #network #performance #towards
- Towards the Efficient Recovery of General Multi-Dimensional Bayesian Network Classifier (SF, SM, MCD), pp. 16–30.
- MLDM-2014-KhasnabishSDS #detection #learning #programming language #source code #using
- Detecting Programming Language from Source Code Using Bayesian Learning Techniques (JNK, MS, JD, GS), pp. 513–522.
- MLDM-2014-SandovalH #learning #network #using
- Learning of Natural Trading Strategies on Foreign Exchange High-Frequency Market Data Using Dynamic Bayesian Networks (JS, GH), pp. 408–421.
- RecSys-2014-KimC #collaboration #predict
- Bayesian binomial mixture model for collaborative prediction with non-random missing data (YDK, SC), pp. 201–208.
- RecSys-2014-LercheJ #feedback #personalisation #ranking #using
- Using graded implicit feedback for bayesian personalized ranking (LL, DJ), pp. 353–356.
- SIGIR-2014-CaiLR #documentation #matrix #personalisation #probability #ranking
- Personalized document re-ranking based on Bayesian probabilistic matrix factorization (FC, SL, MdR), pp. 835–838.
- SAC-2014-SeffrinRJ #algebra #network
- A dynamic bayesian network for inference of learners’ algebraic knowledge (HMS, GLR, PAJ), pp. 235–240.
- IJCAR-2014-CeylanP #logic
- The Bayesian Description Logic ℬℰℒ (IIC, RP), pp. 480–494.
- CASE-2013-LinG #detection #framework #network #optimisation #synthesis
- Synthesis and optimization of a Bayesian belief network based observation platform for anomaly detection under partial and unreliable observations (WCL, HEG), pp. 51–58.
- DAC-2013-GuCL #estimation #performance #validation
- Efficient moment estimation with extremely small sample size via bayesian inference for analog/mixed-signal validation (CG, EC, XL), p. 7.
- DAC-2013-WangZSLG #modelling #performance #reuse #scalability
- Bayesian model fusion: large-scale performance modeling of analog and mixed-signal circuits by reusing early-stage data (FW, WZ, SS, XL, CG), p. 6.
- ICDAR-2013-PuriST #learning #network
- Bayesian Network Structure Learning and Inference Methods for Handwriting (MP, SNS, YT), pp. 1320–1324.
- ICDAR-2013-RamaiahSG #framework #modelling
- A Bayesian Framework for Modeling Accents in Handwriting (CR, AS, VG), pp. 917–921.
- SIGMOD-2013-LinK #estimation #privacy #statistics
- Information preservation in statistical privacy and bayesian estimation of unattributed histograms (BRL, DK), pp. 677–688.
- DHM-SET-2013-BusogiKSRYK #behaviour #problem
- Bayesian Affordance-Based Agent Model for Wayfinding Behaviors in Evacuation Problems (MB, NK, DS, HBR, AY, DK), pp. 297–306.
- ICEIS-J-2013-LiL13a #object-oriented #predict
- Bayesian Prediction of Fault-Proneness of Agile-Developed Object-Oriented System (LL, HL), pp. 209–225.
- ICEIS-v2-2013-LiL #agile #network #object-oriented #predict #process #using
- Predicting Fault-proneness of Object-Oriented System Developed with Agile Process using Learned Bayesian Network (LL, HL), pp. 5–16.
- ICML-c1-2013-AnandkumarHJK #learning #linear #network
- Learning Linear Bayesian Networks with Latent Variables (AA, DH, AJ, SK), pp. 249–257.
- ICML-c2-2013-WenKEB
- Sequential Bayesian Search (ZW, BK, BE, SB), pp. 226–234.
- ICML-c3-2013-BellemareVB #learning #recursion
- Bayesian Learning of Recursively Factored Environments (MGB, JV, MB), pp. 1211–1219.
- ICML-c3-2013-GermainHLM #adaptation #approach #classification #linear
- A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers (PG, AH, FL, EM), pp. 738–746.
- ICML-c3-2013-GonenKK #kernel #matrix
- Kernelized Bayesian Matrix Factorization (MG, SAK, SK), pp. 864–872.
- ICML-c3-2013-GrosshansSBS #game studies #problem
- Bayesian Games for Adversarial Regression Problems (MG, CS, MB, TS), pp. 55–63.
- ICML-c3-2013-GuptaPV #approach #learning #multi #parametricity
- Factorial Multi-Task Learning : A Bayesian Nonparametric Approach (SKG, DQP, SV), pp. 657–665.
- ICML-c3-2013-LakshminarayananRT #top-down
- Top-down particle filtering for Bayesian decision trees (BL, DMR, YWT), pp. 280–288.
- ICML-c3-2013-PeharzTP #generative #network
- The Most Generative Maximum Margin Bayesian Networks (RP, ST, FP), pp. 235–243.
- KDD-2013-AhmedS #modelling #parametricity #scalability
- The dataminer’s guide to scalable mixed-membership and nonparametric bayesian models (AA, AJS), p. 1529.
- KDD-2013-FouldsBDSW #probability
- Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation (JRF, LB, CD, PS, MW), pp. 446–454.
- KDD-2013-NaganoITUA #modelling #parametricity
- Nonparametric hierarchal bayesian modeling in non-contractual heterogeneous survival data (SN, YI, NT, TU, MA), pp. 668–676.
- RecSys-2013-BabasCT #personalisation #recommendation #what
- You are what you consume: a bayesian method for personalized recommendations (KB, GC, ET), pp. 221–228.
- SEKE-2013-DuttaAKB #approach #distributed
- Virtual Medical Board: A Distributed Bayesian Agent Based Approach (S) (AD, SA, AK, SB), pp. 685–688.
- POPL-2013-GordonABCGNRR #reasoning
- A model-learner pattern for bayesian reasoning (ADG, MA, JB, GC, TG, AVN, SKR, CVR), pp. 403–416.
- ESEC-FSE-2013-ClaretRNGB #analysis #data flow #using
- Bayesian inference using data flow analysis (GC, SKR, AVN, ADG, JB), pp. 92–102.
- CASE-2012-YamaguchiIS #data-driven #database #fault #network
- Data based construction of Bayesian Network for fault diagnosis of event-driven systems (TY, SI, TS), pp. 508–514.
- VLDB-2012-SatuluriP #locality #performance #similarity
- Bayesian Locality Sensitive Hashing for Fast Similarity Search (VS, SP), pp. 430–441.
- VLDB-2012-ZhaoRGH #approach #integration
- A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration (BZ, BIPR, JG, JH), pp. 550–561.
- STOC-2012-BeiCGL #design
- Budget feasible mechanism design: from prior-free to bayesian (XB, NC, NG, PL), pp. 449–458.
- ICEIS-v1-2012-NikovskiEYST #automation #composition #network
- Bayesian Networks for Matcher Composition in Automatic Schema Matching (DN, AE, XY, MS, ST), pp. 48–55.
- CIKM-2012-JiaZH #network #simulation
- Non-stationary bayesian networks based on perfect simulation (YJ, WZ, JH), pp. 1095–1104.
- CIKM-2012-XuZG #multi #online
- Multiview hierarchical bayesian regression model andapplication to online advertising (TX, RZ, ZG), pp. 485–494.
- ICML-2012-AhnBW #probability
- Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (SA, AKB, MW), p. 230.
- ICML-2012-AzimiJF #hybrid #optimisation
- Hybrid Batch Bayesian Optimization (JA, AJ, XZF), p. 45.
- ICML-2012-BachrachGMG #adaptation #crowdsourcing #how #testing #visual notation
- How To Grade a Test Without Knowing the Answers — A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing (YB, TG, TM, JG), p. 108.
- ICML-2012-BorboudakisT #constraints #graph #information management #network
- Incorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs (GB, IT), p. 59.
- ICML-2012-BracegirdleB
- Bayesian Conditional Cointegration (CB, DB), p. 220.
- ICML-2012-DundarAQR #learning #modelling #online
- Bayesian Nonexhaustive Learning for Online Discovery and Modeling of Emerging Classes (MD, FA, AQ, BR), p. 18.
- ICML-2012-FujimakiH #markov #modelling
- Factorized Asymptotic Bayesian Hidden Markov Models (RF, KH), p. 157.
- ICML-2012-GarnettKXSM
- Bayesian Optimal Active Search and Surveying (RG, YK, XX, JGS, RPM), p. 111.
- ICML-2012-Gonen #kernel #learning #multi #performance
- Bayesian Efficient Multiple Kernel Learning (MG), p. 17.
- ICML-2012-KoS #modelling #scalability
- Large Scale Variational Bayesian Inference for Structured Scale Mixture Models (YJK, MWS), p. 229.
- ICML-2012-KulisJ #algorithm
- Revisiting k-means: New Algorithms via Bayesian Nonparametrics (BK, MIJ), p. 148.
- ICML-2012-MohamedHG #learning
- Evaluating Bayesian and L1 Approaches for Sparse Unsupervised Learning (SM, KAH, ZG), p. 91.
- ICML-2012-MorvantKR #bound #classification #matrix #multi
- PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification (EM, SK, LR), p. 158.
- ICML-2012-PaisleyBJ #probability
- Variational Bayesian Inference with Stochastic Search (JWP, DMB, MIJ), p. 177.
- ICML-2012-PeharzP #learning #network
- Exact Maximum Margin Structure Learning of Bayesian Networks (RP, FP), p. 102.
- ICML-2012-ShterevD
- Bayesian Watermark Attacks (IS, DBD), p. 153.
- ICML-2012-WangWHL #learning #monte carlo
- Monte Carlo Bayesian Reinforcement Learning (YW, KSW, DH, WSL), p. 105.
- ICML-2012-XuYQ #composition #data analysis #infinity #modelling #multi #parametricity
- Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis (ZX, FY, AQ), p. 218.
- ICML-2012-ZhongG #approach #approximate #matrix
- A Bayesian Approach to Approximate Joint Diagonalization of Square Matrices (MZ, MAG), p. 87.
- ICPR-2012-Capitaine #equivalence #probability
- Set-valued Bayesian inference with probabilistic equivalence (HLC), pp. 2132–2135.
- ICPR-2012-GuK #learning #online #visual notation
- Grassmann manifold online learning and partial occlusion handling for visual object tracking under Bayesian formulation (IYHG, ZHK), pp. 1463–1466.
- ICPR-2012-GuptaPV #parametricity
- A nonparametric Bayesian Poisson gamma model for count data (SKG, DQP, SV), pp. 1815–1818.
- ICPR-2012-KafaiBA #classification #clustering #estimation #network
- Cluster-Classification Bayesian Networks for head pose estimation (MK, BB, LA), pp. 2869–2872.
- ICPR-2012-TangS #independence #learning #network #performance #testing #using
- Efficient and accurate learning of Bayesian networks using chi-squared independence tests (YT, SNS), pp. 2723–2726.
- ICPR-2012-TianC #image #video
- Bayesian image enlargement for mixed-resolution video (JT, LC), pp. 3082–3085.
- ICPR-2012-TurkovKM #concept #pattern matching #pattern recognition #problem #recognition
- The Bayesian logistic regression in pattern recognition problems under concept drift (PAT, OK, VM), pp. 2976–2979.
- ICPR-2012-WangJ #network #recognition
- Incorporating contextual knowledge to Dynamic Bayesian Networks for event recognition (XW, QJ), pp. 3378–3381.
- ICPR-2012-WangJ12b #learning #network #process #recognition
- Learning dynamic Bayesian network discriminatively for human activity recognition (XW, QJ), pp. 3553–3556.
- ICPR-2012-YoonFW #generative
- Bayesian separation of wind power generation signals (JWY, FF, MW), pp. 2660–2663.
- ICPR-2012-YoonT #implementation
- Bayesian implementation of a Lagrangian macroscopic traffic flow model (JWY, TTT), pp. 214–217.
- ICPR-2012-ZhangWN #detection #feature model #student
- Bayesian feature selection and model detection for student’s t-mixture distributions (HZ, QMJW, TMN), pp. 1631–1634.
- ICPR-2012-ZhaoXY #learning #network #speech
- Unsupervised Tibetan speech features Learning based on Dynamic Bayesian Networks (YZ, XX, GY), pp. 2319–2322.
- KDD-2012-SilvaC #learning #matrix #online
- Active learning for online bayesian matrix factorization (JGS, LC), pp. 325–333.
- KDD-2012-Ueda #data analysis #relational
- Bayesian relational data analysis (NU), p. 815.
- KDIR-2012-AlkouzA #approach #network #semantics #social
- An Interests Discovery Approach in Social Networks based on a Semantically Enriched Bayesian Network Model (AA, SA), pp. 300–305.
- KDIR-2012-CheungZZ #approach #network
- A Bayesian Approach for Constructing Ensemble Neural Network (SHC, YZ, ZZ), pp. 374–377.
- KMIS-2012-KataokaTKH #information management #network
- An Information Sharing Method for Skilled Management Operations based on Bayesian Network Inference (TK, KT, MK, MH), pp. 257–260.
- MLDM-2012-BouhamedMLR #heuristic #learning #network
- A New Learning Structure Heuristic of Bayesian Networks from Data (HB, AM, TL, AR), pp. 183–197.
- MLDM-2012-TurkovKM #approach #concept #pattern matching #pattern recognition #problem #recognition
- Bayesian Approach to the Concept Drift in the Pattern Recognition Problems (PAT, OK, VM), pp. 1–10.
- RecSys-2012-Herbrich #distributed #learning #online #realtime
- Distributed, real-time bayesian learning in online services (RH), pp. 203–204.
- SEKE-2012-PittoliSN #monitoring #network
- Investigating the Use of Bayesian Networks as a Support Tool for Monitoring Software Projects (FP, ALRdS, DJN), pp. 570–573.
- SIGIR-2012-NunzioS #classification #data analysis #naive bayes #visual notation
- A visual tool for bayesian data analysis: the impact of smoothing on naive bayes text classifiers (GMDN, AS), p. 1002.
- SAC-2012-JabeurTB #microblog #network #retrieval #twitter
- Uprising microblogs: a bayesian network retrieval model for tweet search (LBJ, LT, MB), pp. 943–948.
- CBSE-2011-AletiM #component #deployment #learning #optimisation
- Component deployment optimisation with bayesian learning (AA, IM), pp. 11–20.
- CASE-2011-KurzKP #maintenance #network #using
- Dynamic Maintenance in semiconductor manufacturing using Bayesian networks (DK, JK, JP), pp. 238–243.
- DAC-2011-WangXAP #classification #learning #policy #power management #using
- Deriving a near-optimal power management policy using model-free reinforcement learning and Bayesian classification (YW, QX, ACA, MP), pp. 41–46.
- ICDAR-2011-EmilieBA #constraints #network #physics #recognition #semantics
- Use of Semantic and Physical Constraints in Bayesian Networks for Form Recognition (EP, YB, AB), pp. 946–950.
- ICDAR-2011-ShahabSD #approach #recognition
- Bayesian Approach to Photo Time-Stamp Recognition (AS, FS, AD), pp. 1039–1043.
- ESOP-2011-BorgstromGGMG #machine learning #semantics
- Measure Transformer Semantics for Bayesian Machine Learning (JB, ADG, MG, JM, JVG), pp. 77–96.
- DHM-2011-EilersM #composition #learning #modelling #using
- Learning the Relevant Percepts of Modular Hierarchical Bayesian Driver Models Using a Bayesian Information Criterion (ME, CM), pp. 463–472.
- DHM-2011-MobusEG #composition #predict
- Predicting the Focus of Attention and Deficits in Situation Awareness with a Modular Hierarchical Bayesian Driver Model (CM, ME, HG), pp. 483–492.
- ICEIS-v2-2011-ZhuXM #assessment #network #risk management #using
- Operational Hazard Risk Assessment using Bayesian Networks (ZJZ, YX, EM), pp. 135–139.
- ICEIS-v4-2011-HuGK #evaluation #modelling #network #trust
- Supply Chain Trust Evaluation Model based on Bayesian Network (XH, FG, YK), pp. 712–715.
- CIKM-2011-HarveyCRC #collaboration #modelling #predict #rating
- Bayesian latent variable models for collaborative item rating prediction (MH, MJC, IR, FC), pp. 699–708.
- CIKM-2011-TomasevRMI #approach #classification #nearest neighbour #probability
- A probabilistic approach to nearest-neighbor classification: naive hubness bayesian kNN (NT, MR, DM, MI), pp. 2173–2176.
- CIKM-2011-WangL #framework #learning #named #rank
- CoRankBayes: bayesian learning to rank under the co-training framework and its application in keyphrase extraction (CW, SL), pp. 2241–2244.
- ICML-2011-BarthelmeC #named
- ABC-EP: Expectation Propagation for Likelihoodfree Bayesian Computation (SB, NC), pp. 289–296.
- ICML-2011-DoshiWTR #infinity #network
- Infinite Dynamic Bayesian Networks (FD, DW, JBT, NR), pp. 913–920.
- ICML-2011-NakajimaSB #automation #on the
- On Bayesian PCA: Automatic Dimensionality Selection and Analytic Solution (SN, MS, SDB), pp. 497–504.
- ICML-2011-NikolenkoS #contest #rating
- A New Bayesian Rating System for Team Competitions (SIN, AS), pp. 601–608.
- ICML-2011-VirtanenKK
- Bayesian CCA via Group Sparsity (SV, AK, SK), pp. 457–464.
- ICML-2011-WellingT #learning #probability
- Bayesian Learning via Stochastic Gradient Langevin Dynamics (MW, YWT), pp. 681–688.
- KDD-2011-HuangLYFCWR #effectiveness #modelling #network
- Brain effective connectivity modeling for alzheimer’s disease by sparse gaussian bayesian network (SH, JL, JY, AF, KC, TW, ER), pp. 931–939.
- RecSys-2011-BarbieriCMO #approach #modelling #recommendation
- Modeling item selection and relevance for accurate recommendations: a bayesian approach (NB, GC, GM, RO), pp. 21–28.
- SAC-2011-YeHL #approach #network #query
- A Bayesian network approach to context sensitive query expansion (ZY, XH, HL), pp. 1138–1142.
- ICLP-2011-ChristiansenHLP #analysis #network #sequence
- Bayesian Annotation Networks for Complex Sequence Analysis (HC, CTH, OTL, MP), pp. 220–230.
- DAC-2010-ZhangLR
- Bayesian virtual probe: minimizing variation characterization cost for nanoscale IC technologies via Bayesian inference (WZ, XL, RAR), pp. 262–267.
- DATE-2010-KrishnanDBK
- Block-level bayesian diagnosis of analogue electronic circuits (SK, KDD, RB, HGK), pp. 1767–1772.
- STOC-2010-HartlineL #algorithm #design
- Bayesian algorithmic mechanism design (JDH, BL), pp. 301–310.
- IFL-2010-TorontoM #probability
- From Bayesian Notation to Pure Racket via Discrete Measure-Theoretic Probability in λ ZFC (NT, JM), pp. 89–104.
- ICEIS-AIDSS-2010-AhdabG #learning #network #performance
- Efficient Learning of Dynamic Bayesian Networks from Timed Data (AA, MLG), pp. 226–231.
- ICEIS-AIDSS-2010-TroianoP #complexity #modelling
- Supporting Complexity in Modeling Bayesian Troubleshooting (LT, DDP), pp. 344–349.
- CIKM-2010-ZhangWWCZHZ #learning #modelling
- Learning click models via probit bayesian inference (YZ, DW, GW, WC, ZZ, BH, LZ), pp. 439–448.
- ICML-2010-DondelingerLH #flexibility #information management #network
- Heterogeneous Continuous Dynamic Bayesian Networks with Flexible Structure and Inter-Time Segment Information Sharing (FD, SL, DH), pp. 303–310.
- ICML-2010-DowneyS #adaptation #difference
- Temporal Difference Bayesian Model Averaging: A Bayesian Perspective on Adapting λ (CD, SS), pp. 311–318.
- ICML-2010-GraepelCBH #predict
- Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine (TG, JQC, TB, RH), pp. 13–20.
- ICML-2010-HoffmanBC #matrix #music #parametricity
- Bayesian Nonparametric Matrix Factorization for Recorded Music (MDH, DMB, PRC), pp. 439–446.
- ICML-2010-LazaricG #learning #multi
- Bayesian Multi-Task Reinforcement Learning (AL, MG), pp. 599–606.
- ICML-2010-LiangJK #approach #learning #source code
- Learning Programs: A Hierarchical Bayesian Approach (PL, MIJ, DK), pp. 639–646.
- ICML-2010-NakajimaS #matrix
- Implicit Regularization in Variational Bayesian Matrix Factorization (SN, MS), pp. 815–822.
- ICPR-2010-Bouchaffra #network
- Topological Dynamic Bayesian Networks (DB), pp. 898–901.
- ICPR-2010-CamposZJ
- An Improved Structural EM to Learn Dynamic Bayesian Nets (CPdC, ZZ, QJ), pp. 601–604.
- ICPR-2010-KirbizCG #matrix #modelling
- Bayesian Inference for Nonnegative Matrix Factor Deconvolution Models (SK, ATC, BG), pp. 2812–2815.
- ICPR-2010-PhilippotBB #algorithm #classification #learning #network #online
- Bayesian Networks Learning Algorithms for Online Form Classification (EP, YB, AB), pp. 1981–1984.
- ICPR-2010-PiroNNB #classification
- Boosting Bayesian MAP Classification (PP, RN, FN, MB), pp. 661–665.
- ICPR-2010-PuS #learning #probability #verification
- Probabilistic Measure for Signature Verification Based on Bayesian Learning (DP, SNS), pp. 1188–1191.
- ICPR-2010-Tagawa #eye tracking #modelling #statistics #using
- Depth Perception Model Based on Fixational Eye Movements Using Bayesian Statistical Inference (NT), pp. 1662–1665.
- ICPR-2010-TakasuFA #algorithm #similarity
- A Variational Bayesian EM Algorithm for Tree Similarity (AT, DF, TA), pp. 1056–1059.
- ICPR-2010-TanveerI #approach #using
- A Bayesian Approach to Face Hallucination Using DLPP and KRR (MT, NI), pp. 2154–2157.
- ICPR-2010-UyarBCB #development #network #predict
- Bayesian Networks for Predicting IVF Blastocyst Development (AU, ABB, HNC, MB), pp. 2772–2775.
- ICPR-2010-Wang #detection #documentation #recognition #using
- Document Logo Detection and Recognition Using Bayesian Model (HW), pp. 1961–1964.
- ICPR-2010-WirkertDC
- Bayesian GOETHE Tracking (SW, ED, LC), pp. 2077–2080.
- ICPR-2010-ZhaoHDC #3d #automation #feature model #recognition #statistics
- Automatic 3D Facial Expression Recognition Based on a Bayesian Belief Net and a Statistical Facial Feature Model (XZ, DH, ED, LC), pp. 3724–3727.
- SEKE-2010-BackerM #algorithm #network
- Evaluating the Weighted Sum Algorithm for Estimating Conditional Probabilities in Bayesian Networks (SB, EM), pp. 319–324.
- SEKE-2010-GoelXS #multi #network #online #verification
- A Multi-State Bayesian Network for Shill Verification in Online Auctions (AG, HX, SMS), pp. 279–285.
- SEKE-2010-Radlinski #development #predict #quality #using
- Software Development Effort and Quality Prediction Using Bayesian Nets and small Local Qualitative Data (LR), pp. 113–116.
- SAC-2010-AyyappanWN #algorithm #constraints #learning #named #network #scalability
- MICHO: a scalable constraint-based algorithm for learning Bayesian networks (MA, YKW, WKN), pp. 985–989.
- SAC-2010-LeeKL #network #personalisation #taxonomy
- Applying taxonomic knowledge to Bayesian belief network for personalized search (JwL, HjK, SgL), pp. 1796–1801.
- SAC-2010-QinXL #classification #nondeterminism
- A Bayesian classifier for uncertain data (BQ, YX, FL), pp. 1010–1014.
- ICSE-2010-SridharanN #data analysis #re-engineering
- Bayesian methods for data analysis in software engineering (MS, ASN), pp. 477–478.
- CASE-2009-FanL #effectiveness #ranking
- A Bayesian Ranking Scheme for supporting cost-effective yield diagnosis services (CMF, YPL), pp. 427–432.
- DRR-2009-Likforman-SulemS #classification #network #recognition
- Combination of dynamic Bayesian network classifiers for the recognition of degraded characters (LLS, MS), pp. 1–10.
- ICDAR-2009-BarratT #image #modelling #network #using
- Modeling, Classifying and Annotating Weakly Annotated Images Using Bayesian Network (SB, ST), pp. 1201–1205.
- ICDAR-2009-HamamuraAI09a #pattern matching #pattern recognition #recognition
- Bayesian Best-First Search for Pattern Recognition — Application to Address Recognition (TH, TA, BI), pp. 461–465.
- ICDAR-2009-LuqmanBR #classification #graph #network #recognition #using
- Graphic Symbol Recognition Using Graph Based Signature and Bayesian Network Classifier (MML, TB, JYR), pp. 1325–1329.
- ICDAR-2009-StefanoFFM #classification #evolution #learning #network
- Learning Bayesian Networks by Evolution for Classifier Combination (CDS, FF, ASdF, AM), pp. 966–970.
- ICDAR-2009-Takasu #approximate #estimation #similarity
- Bayesian Similarity Model Estimation for Approximate Recognized Text Search (AT), pp. 611–615.
- VLDB-2009-MozafariZ #classification #naive bayes #privacy
- Publishing Naive Bayesian Classifiers: Privacy without Accuracy Loss (BM, CZ), pp. 1173–1185.
- ITiCSE-2009-KasurinenN #programming
- Estimating programming knowledge with Bayesian knowledge tracing (JK, UN), pp. 313–317.
- CSMR-2009-FrankeJLUHEK #assessment #metric #network #using
- A Method for Choosing Software Assessment Measures Using Bayesian Networks and Diagnosis (UF, PJ, RL, JU, DH, ME, JK), pp. 241–246.
- DHM-2009-MobusE #approach #modelling #programming #towards
- Further Steps towards Driver Modeling According to the Bayesian Programming Approach (CM, ME), pp. 413–422.
- CIKM-2009-KuoCW #learning #rank
- Learning to rank from Bayesian decision inference (JWK, PJC, HMW), pp. 827–836.
- CIKM-2009-MasadaFTHSO #analysis #optimisation #topic
- Dynamic hyperparameter optimization for bayesian topical trend analysis (TM, DF, AT, TH, YS, KO), pp. 1831–1834.
- ECIR-2009-StathopoulosJ #automation #image
- Bayesian Mixture Hierarchies for Automatic Image Annotation (VS, JMJ), pp. 138–149.
- ICML-2009-AdamsG #learning #named #parametricity
- Archipelago: nonparametric Bayesian semi-supervised learning (RPA, ZG), pp. 1–8.
- ICML-2009-AdamsMM #parametricity #process
- Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities (RPA, IM, DJCM), pp. 9–16.
- ICML-2009-CamposZJ #constraints #learning #network #using
- Structure learning of Bayesian networks using constraints (CPdC, ZZ, QJ), pp. 113–120.
- ICML-2009-GarnettOR #predict
- Sequential Bayesian prediction in the presence of changepoints (RG, MAO, SJR), pp. 345–352.
- ICML-2009-GermainLLM #classification #learning #linear
- PAC-Bayesian learning of linear classifiers (PG, AL, FL, MM), pp. 353–360.
- ICML-2009-GuiverS #modelling #ranking
- Bayesian inference for Plackett-Luce ranking models (JG, ES), pp. 377–384.
- ICML-2009-HaiderS #clustering #detection #email
- Bayesian clustering for email campaign detection (PH, TS), pp. 385–392.
- ICML-2009-KamisettyL #approach #assessment #quality
- A Bayesian approach to protein model quality assessment (HK, CJL), pp. 481–488.
- ICML-2009-KolterN #polynomial
- Near-Bayesian exploration in polynomial time (JZK, AYN), pp. 513–520.
- ICML-2009-NickischS #linear #modelling #scalability
- Convex variational Bayesian inference for large scale generalized linear models (HN, MWS), pp. 761–768.
- ICML-2009-RamanFWDR
- The Bayesian group-Lasso for analyzing contingency tables (SR, TJF, PJW, ED, VR), pp. 881–888.
- KDD-2009-LiuGF #named
- BBM: bayesian browsing model from petabyte-scale data (CL, FG, CF), pp. 537–546.
- MLDM-2009-GaagRFGEBF #classification #network
- Aligning Bayesian Network Classifiers with Medical Contexts (LCvdG, SR, AF, AdG, MJCE, FJB, BCJMF), pp. 787–801.
- SIGIR-2009-HuangH #approach #information retrieval #learning #ranking
- A bayesian learning approach to promoting diversity in ranking for biomedical information retrieval (XH, QH), pp. 307–314.
- SAC-2009-Ries #modelling #representation #trust
- Extending Bayesian trust models regarding context-dependence and user friendly representation (SR), pp. 1294–1301.
- SAC-2009-SherminO #network #using
- Using dynamic bayesian networks to infer gene regulatory networks from expression profiles (AS, MAO), pp. 799–803.
- SAC-2009-Villamarin-SalomonB #detection #similarity
- Bayesian bot detection based on DNS traffic similarity (RVS, JCB), pp. 2035–2041.
- WCRE-2008-ZhouWGGL #approach #network #predict
- A Bayesian Network Based Approach for Change Coupling Prediction (YZ, MW, EG, HG, JL), pp. 27–36.
- ICALP-A-2008-ChristodoulouKS #combinator
- Bayesian Combinatorial Auctions (GC, AK, MS), pp. 820–832.
- ICEIS-AIDSS-2008-BringasPPS
- Bayesian-Networks-Based Misuse and Anomaly Prevention System (PGB, YKP, SP, PS), pp. 62–69.
- ICML-2008-CaronD #parametricity
- Sparse Bayesian nonparametric regression (FC, AD), pp. 88–95.
- ICML-2008-RaykarKBDR #automation #feature model #induction #learning #multi
- Bayesian multiple instance learning: automatic feature selection and inductive transfer (VCR, BK, JB, MD, RBR), pp. 808–815.
- ICML-2008-ReisingerSM #kernel #learning #online
- Online kernel selection for Bayesian reinforcement learning (JR, PS, RM), pp. 816–823.
- ICML-2008-SalakhutdinovM08a #markov #matrix #monte carlo #probability #using
- Bayesian probabilistic matrix factorization using Markov chain Monte Carlo (RS, AM), pp. 880–887.
- ICML-2008-SeegerN #design
- Compressed sensing and Bayesian experimental design (MWS, HN), pp. 912–919.
- ICML-2008-SuZLM #learning #network #parametricity
- Discriminative parameter learning for Bayesian networks (JS, HZ, CXL, SM), pp. 1016–1023.
- ICPR-2008-BarratT #effectiveness #image #network #retrieval #semantics #using #visual notation
- Visual features with semantic combination using Bayesian network for a more effective image retrieval (SB, ST), pp. 1–4.
- ICPR-2008-Boccignone #analysis #parametricity #video
- Nonparametric Bayesian attentive video analysis (GB), pp. 1–4.
- ICPR-2008-CamposJ #constraints #learning #network #parametricity #using
- Improving Bayesian Network parameter learning using constraints (CPdC, QJ), pp. 1–4.
- ICPR-2008-ChenTZ #classification #novel
- Spam filtering with several novel bayesian classifiers (CC, YT, CZ), pp. 1–4.
- ICPR-2008-Dahyot #classification #statistics
- Bayesian classification for the Statistical Hough transform (RD), pp. 1–4.
- ICPR-2008-HeAP
- A Bayesian Local Binary Pattern texture descriptor (CH, TA, MP), pp. 1–4.
- ICPR-2008-LiaoJ #learning #network #parametricity #semistructured data
- Exploiting qualitative domain knowledge for learning Bayesian network parameters with incomplete data (WL, QJ), pp. 1–4.
- ICPR-2008-MatsuiCM #automation #detection
- Bayesian sequential face detection with automatic re-initialization (AM, SC, TM), pp. 1–4.
- ICPR-2008-SukSL #gesture #modelling #network #recognition #robust
- Robust modeling and recognition of hand gestures with dynamic Bayesian network (HIS, BKS, SWL), pp. 1–4.
- ICPR-2008-TagawaKNO #3d #image #multi #network #sequence
- Direct 3-D shape recovery from image sequence based on multi-scale Bayesian network (NT, JK, SN, KO), pp. 1–4.
- KDD-2008-SatoYN #graph #information management #parametricity #semantics #using #word
- Knowledge discovery of semantic relationships between words using nonparametric bayesian graph model (IS, MY, HN), pp. 587–595.
- KDD-2008-SongJRG #linear
- A bayesian mixture model with linear regression mixing proportions (XS, CJ, SR, JG), pp. 659–667.
- SEKE-2008-CemerlicYK #detection #network
- Network Intrusion Detection Based on Bayesian Networks (AC, LY, JMK), pp. 791–794.
- SIGIR-2008-XuA #feedback
- A bayesian logistic regression model for active relevance feedback (ZX, RA), pp. 227–234.
- ICST-2008-MirarabT #approach #empirical #testing
- An Empirical Study on Bayesian Network-based Approach for Test Case Prioritization (SM, LT), pp. 278–287.
- QoSA-2007-RoshandelMG #architecture #predict #reliability
- A Bayesian Model for Predicting Reliability of Software Systems at the Architectural Level (RR, NM, LG), pp. 108–126.
- CASE-2007-MoralesGM #effectiveness #fault #network #petri net
- Diagnosis and Treatment of Faults in Productive Systems based on Bayesian Networks and Petri Net (RAGM, JIG, PEM), pp. 357–362.
- DRR-2007-Likforman-SulemS #network #recognition #using
- Recognition of degraded handwritten digits using dynamic Bayesian networks (LLS, MS).
- ICDAR-2007-Likforman-SulemS #network #recognition #using
- Recognition of Broken Characters from Historical Printed Books Using Dynamic Bayesian Networks (LLS, MS), pp. 173–177.
- ICDAR-2007-WillemsV #approach #detection #interactive #network
- A Bayesian Network Approach to Mode Detection for Interactive Maps (DW, LV), pp. 869–873.
- VLDB-2007-SilbersteinGMPY #approach
- Making Sense of Suppressions and Failures in Sensor Data: A Bayesian Approach (AS, AEG, KM, GP, JY), pp. 842–853.
- VLDB-2007-WuJ #set
- A Bayesian Method for Guessing the Extreme Values in a Data Set (MW, CJ), pp. 471–482.
- FASE-2007-MirarabT #approach #network #testing
- A Prioritization Approach for Software Test Cases Based on Bayesian Networks (SM, LT), pp. 276–290.
- ICPC-2007-MirarabHT #co-evolution #network #predict #using
- Using Bayesian Belief Networks to Predict Change Propagation in Software Systems (SM, AH, LT), pp. 177–188.
- HIMI-MTT-2007-AblassmeierPRR #network #using
- Context-Aware Information Agents for the Automotive Domain Using Bayesian Networks (MA, TP, SR, GR), pp. 561–570.
- HIMI-MTT-2007-LinL #analysis #automation
- A Bayesian Methodology for Semi-automated Task Analysis (SCL, MRL), pp. 697–704.
- ICEIS-AIDSS-2007-StateCPS #approach #classification
- A Connectionist Approach in Bayesian Classification (LS, CC, PV, VS), pp. 185–190.
- CIKM-2007-LiuTZ #learning #network
- Ensembling Bayesian network structure learning on limited data (FL, FT, QZ), pp. 927–930.
- ECIR-2007-YeungBCK #approach #documentation #learning
- A Bayesian Approach for Learning Document Type Relevance (PCKY, SB, CLAC, MK), pp. 753–756.
- ICML-2007-GhavamzadehE #algorithm
- Bayesian actor-critic algorithms (MG, YE), pp. 297–304.
- ICML-2007-Jaeger #learning #network #parametricity #relational
- Parameter learning for relational Bayesian networks (MJ), pp. 369–376.
- ICML-2007-JiC #optimisation
- Bayesian compressive sensing and projection optimization (SJ, LC), pp. 377–384.
- ICML-2007-KropotovV #learning #on the
- On one method of non-diagonal regularization in sparse Bayesian learning (DK, DV), pp. 457–464.
- ICML-2007-TitovH #incremental #network #predict
- Incremental Bayesian networks for structure prediction (IT, JH), pp. 887–894.
- ICML-2007-WilsonFRT #approach #learning #multi
- Multi-task reinforcement learning: a hierarchical Bayesian approach (AW, AF, SR, PT), pp. 1015–1022.
- ICML-2007-YamazakiKWSM #fault
- Asymptotic Bayesian generalization error when training and test distributions are different (KY, MK, SW, MS, KRM), pp. 1079–1086.
- MLDM-2007-Holness #network
- A Direct Measure for the Efficacy of Bayesian Network Structures Learned from Data (GH), pp. 601–615.
- RecSys-2007-PronkVPT #classification #naive bayes #recommendation
- Incorporating user control into recommender systems based on naive bayesian classification (VP, WFJV, AP, MT), pp. 73–80.
- SIGIR-2007-ZhangK #modelling #performance #recommendation
- Efficient bayesian hierarchical user modeling for recommendation system (YZ, JK), pp. 47–54.
- SAC-2007-ZhangMMB #locality #network #performance #problem #self #using
- Performance problem localization in self-healing, service-oriented systems using Bayesian networks (RZ, SM, SM, AB), pp. 104–109.
- CIKM-2006-ZigorisZ #adaptation #feedback #profiling
- Bayesian adaptive user profiling with explicit & implicit feedback (PZ, YZ), pp. 397–404.
- ECIR-2006-Amati #approach #information retrieval
- Frequentist and Bayesian Approach to Information Retrieval (GA), pp. 13–24.
- ICML-2006-Banerjee #bound #on the
- On Bayesian bounds (AB), pp. 81–88.
- ICML-2006-GeJ #approximate #consistency #multi
- A note on mixtures of experts for multiclass responses: approximation rate and Consistent Bayesian Inference (YG, WJ), pp. 329–335.
- ICML-2006-LeeGW #classification #using
- Using query-specific variance estimates to combine Bayesian classifiers (CHL, RG, SW), pp. 529–536.
- ICML-2006-PoupartVHR #learning
- An analytic solution to discrete Bayesian reinforcement learning (PP, NAV, JH, KR), pp. 697–704.
- ICML-2006-SilvaS #learning #metric #modelling
- Bayesian learning of measurement and structural models (RBdAeS, RS), pp. 825–832.
- ICML-2006-SternHG #game studies #predict #ranking
- Bayesian pattern ranking for move prediction in the game of Go (DHS, RH, TG), pp. 873–880.
- ICML-2006-SuZ #classification #network
- Full Bayesian network classifiers (JS, HZ), pp. 897–904.
- ICML-2006-TingDS
- Bayesian regression with input noise for high dimensional data (JAT, AD, SS), pp. 937–944.
- ICML-2006-XingSJT #multi #process #type inference
- Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture (EPX, KAS, MIJ, YWT), pp. 1049–1056.
- ICPR-v1-2006-CarterYF #approach #behaviour #markov #recognition
- A Combined Bayesian Markovian Approach for Behaviour Recognition (NLC, DPY, JMF), pp. 761–764.
- ICPR-v1-2006-DuCXL #interactive #network #process #using
- Recognizing Interaction Activities using Dynamic Bayesian Network (YD, FC, WX, YL), pp. 618–621.
- ICPR-v1-2006-GormanTBH #behaviour #game studies #interactive
- Bayesian Imitation of Human Behavior in Interactive Computer Games (BG, CT, CB, MH), pp. 1244–1247.
- ICPR-v1-2006-RiusVGV #performance
- Action Spaces for Efficient Bayesian Tracking of Human Motion (IR, XV, JG, JJV), pp. 472–475.
- ICPR-v1-2006-WongC #classification #gesture #recognition #using
- Continuous Gesture Recognition using a Sparse Bayesian Classifier (SFW, RC), pp. 1084–1087.
- ICPR-v1-2006-ZhouH #network #visual notation
- Weighted Bayesian Network for Visual Tracking (YZ, TSH), pp. 523–526.
- ICPR-v2-2006-ChangYP #approach
- An Iterative Bayesian Approach for Digital Matting (HC, QY, CP), pp. 122–125.
- ICPR-v2-2006-LernerM #classification #image #learning #network
- Learning Bayesian Networks for Cytogenetic Image Classification (BL, RM), pp. 772–775.
- ICPR-v2-2006-McDanielKP #approach #classification #visual notation
- A Bayesian Approach to Visual Size Classification of Everyday Objects (TLM, KK, SP), pp. 255–259.
- ICPR-v3-2006-BeveridgeSR #classification #comparison #detection #naive bayes #using
- A Comparison of Pixel, Edge andWavelet Features for Face Detection using a Semi-Naive Bayesian Classifier (JRB, JS, BR), pp. 1175–1178.
- ICPR-v3-2006-HarmoucheCAFA #classification #modelling
- Bayesian MS Lesion Classification Modeling Regional and Local Spatial Information (RH, DLC, DLA, SJF, TA), pp. 984–987.
- ICPR-v3-2006-JainML #clustering #feedback
- Bayesian Feedback in Data Clustering (AKJ, PKM, MHCL), pp. 374–378.
- ICPR-v3-2006-MaKKLK #estimation
- Sparse Bayesian Regression for Head Pose Estimation (YM, YK, KK, SL, MK), pp. 507–510.
- ICPR-v3-2006-MatosC #classification #network
- Combining global and local classifiers with Bayesian network (LNM, JMdC), pp. 1212–1215.
- ICPR-v3-2006-PalenichkaZ #image #network #using
- Perceptual Knowledge Extraction Using Bayesian Networks of Salient Image Objects (RMP, MBZ), pp. 1216–1219.
- ICPR-v3-2006-WongWC #classification #robust #using
- Robust Appearance-based Tracking using a sparse Bayesian classifier (SFW, KYKW, RC), pp. 47–50.
- ICPR-v4-2006-LinO #network #recognition #speech
- Switching Auxiliary Chains for Speech Recognition based on Dynamic Bayesian Networks (HL, ZO), pp. 258–261.
- ICPR-v4-2006-LiuH #automation #predict #segmentation #speech
- A Bayesian Predictive Method for Automatic Speech Segmentation (ML, TSH), pp. 290–293.
- ICPR-v4-2006-MatosC06a #classification #network
- Combining global and local classifiers with Bayesian network (LNM, JMdC), p. 952.
- ICPR-v4-2006-PalenichkaZ06a #image #network #using
- Perceptual Knowledge Extraction Using Bayesian Networks of Salient Image Objects (RMP, MBZ), p. 953.
- ICPR-v4-2006-WangK #approach #automation #estimation #using
- Automatic Alignment of High-Resolution NMR Spectra Using a Bayesian Estimation Approach (ZW, SBK), pp. 667–670.
- SEKE-2006-HaiderC #estimation #fault
- Bayesian Estimation of Defects based on Defect Decay Model: BayesED3M (SWH, JWC), pp. 256–261.
- SAC-2006-MerschmannP #approach #classification
- A Bayesian approach for protein classification (LHdCM, AP), pp. 200–201.
- ICSE-2006-AbeMKKH #classification #estimation #using
- Estimation of project success using Bayesian classifier (SA, OM, TK, NK, MH), pp. 600–603.
- ICSE-2006-MandelinKY #approach #architecture #diagrams #modelling
- A Bayesian approach to diagram matching with application to architectural models (DM, DK, DMY), pp. 222–231.
- WICSA-2005-TangJHN #architecture #design #impact analysis #network #predict
- Predicting Change Impact in Architecture Design with Bayesian Belief Networks (AT, YJ, JH, AEN), pp. 67–76.
- ICDAR-2005-HtweHLY #network #online
- Transliteration of Online Handwritten Phonetic Pitman’s Shorthand with the Use of a Bayesian Network (SMH, CH, GL, MY), pp. 1090–1094.
- SAS-2005-JungKSY #analysis #c #statistics
- Taming False Alarms from a Domain-Unaware C Analyzer by a Bayesian Statistical Post Analysis (YJ, JK, JS, KY), pp. 203–217.
- ICEIS-v2-2005-ColaceSVF #algorithm #approach #learning #multi #network
- A Bayesian Networks Structural Learning Algorithm Based on a Multiexpert Approach (FC, MDS, MV, PF), pp. 194–200.
- ICML-2005-AngelopoulosC
- Tempering for Bayesian C&RT (NA, JC), pp. 17–24.
- ICML-2005-BurgeL #learning #network
- Learning class-discriminative dynamic Bayesian networks (JB, TL), pp. 97–104.
- ICML-2005-ChengJSW #image #modelling
- Variational Bayesian image modelling (LC, FJ, DS, SW), pp. 129–136.
- ICML-2005-GirolamiR #kernel #learning #modelling
- Hierarchic Bayesian models for kernel learning (MG, SR), pp. 241–248.
- ICML-2005-HellerG #clustering
- Bayesian hierarchical clustering (KAH, ZG), pp. 297–304.
- ICML-2005-JingPR #classification #learning #naive bayes #network #performance
- Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes (YJ, VP, JMR), pp. 369–376.
- ICML-2005-KoivistoS #aspect-oriented #modelling
- Computational aspects of Bayesian partition models (MK, KS), pp. 433–440.
- ICML-2005-PernkopfB #classification #generative #learning #network #parametricity
- Discriminative versus generative parameter and structure learning of Bayesian network classifiers (FP, JAB), pp. 657–664.
- ICML-2005-SnelsonG #approximate #predict
- Compact approximations to Bayesian predictive distributions (ES, ZG), pp. 840–847.
- ICML-2005-WangLBS #online #optimisation
- Bayesian sparse sampling for on-line reward optimization (TW, DJL, MHB, DS), pp. 956–963.
- KDD-2005-ChenH #analysis #classification #image #network
- A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis (RC, EH), pp. 4–12.
- KDD-2005-JaroszewiczS #network #performance
- Fast discovery of unexpected patterns in data, relative to a Bayesian network (SJ, TS), pp. 118–127.
- MLDM-2005-KarrasMGO #mining
- Improved MRI Mining by Integrating Support Vector Machine Priors in the Bayesian Restoration (DAK, BGM, DGD, DvO), pp. 325–333.
- SEKE-2005-LienT #network #recommendation #web
- A Web Pages Recommender with Bayesian Networks (CCL, HLT), pp. 82–87.
- ICEIS-v2-2004-BendouM #graph #learning #network
- Learning Bayesian Networks with Largest Chain Graphs (MB, PM), pp. 184–190.
- ICEIS-v2-2004-ColaceSVF #algorithm #automation #learning #ontology
- A Semi-Automatic Bayesian Algorithm for Ontology Learning (FC, MDS, MV, PF), pp. 191–196.
- ICEIS-v2-2004-ColaceSVF04a #algorithm #comparison #learning #network
- Bayesian Network Structural Learning from Data: An Algorithms Comparison (FC, MDS, MV, PF), pp. 527–530.
- ICML-2004-DSouzaVS
- The Bayesian backfitting relevance vector machine (AD, SV, SS).
- ICML-2004-GrossmanD #classification #learning #network
- Learning Bayesian network classifiers by maximizing conditional likelihood (DG, PMD).
- ICML-2004-XingSJ #process #type inference
- Bayesian haplo-type inference via the dirichlet process (EPX, RS, MIJ).
- ICML-2004-ZhangYK #algorithm #kernel #learning #matrix #using
- Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm (ZZ, DYY, JTK).
- ICPR-v1-2004-KangD #approximate #bound #classification #fault
- Product Approximation by Minimizing the Upper Bound of Bayes Error Rate for Bayesian Combination of Classifiers (HJK, DSD), pp. 252–255.
- ICPR-v1-2004-LombardiZ #architecture #design
- Architectural Design Issues for Bayesian Contextual Vision (PL, BZ), pp. 753–756.
- ICPR-v1-2004-PereraH #detection
- Bayesian Object-Level Change Detection in Grayscale Imagery (AGAP, AH), pp. 71–75.
- ICPR-v1-2004-SunG #image #markov #random #segmentation
- Bayesian Image Segmentation Based on an Inhomogeneous Hidden Markov Random Field (JS, DG), pp. 596–599.
- ICPR-v2-2004-EngWKY #detection #framework #robust #using
- A Bayesian Framework for Robust Human Detection and Occlusion Handling using Human Shape Model (HLE, JW, AHK, WYY), pp. 257–260.
- ICPR-v2-2004-JorgeMA #architecture #estimation #network #sequence #video
- Estimation of the Bayesian Network Architecture for Object Tracking in Video Sequences (PMJ, JSM, AJA), pp. 732–735.
- ICPR-v2-2004-KagehiroKSF
- Address-Block Extraction by Bayesian Rule (TK, MK, HS, HF), pp. 582–585.
- ICPR-v2-2004-KaneS #classification #image #learning #network
- Bayesian Network Structure Learning and Inference in Indoor vs. Outdoor Image Classification (MJK, AES), pp. 479–482.
- ICPR-v2-2004-Nagao #approach #feature model #kernel
- Bayesian Approach with Nonlinear Kernels to Feature Extraction (KN), pp. 153–156.
- ICPR-v2-2004-SebeCHG #approach #detection #network
- Skin Detection: A Bayesian Network Approach (NS, IC, TSH, TG), pp. 903–906.
- ICPR-v2-2004-WangDZSLB #approach #multi #network #visual notation
- A Dynamic Bayesian Network Approach to Multi-cue based Visual Tracking (TW, QD, YZ, GS, CL, GRB), pp. 167–170.
- ICPR-v2-2004-ZhangZ #automation #concept #framework #image
- A Bayesian Framework for Automatic Concept Discovery in Image Collections (RZ, Z(Z), pp. 973–976.
- ICPR-v3-2004-AnsaryVD #3d #approach #modelling #retrieval
- A Bayesian Approach for 3D Models Retrieval Based on Characteristic Views (TFA, JPV, MD), pp. 898–901.
- ICPR-v3-2004-GurwiczL #agile #estimation #kernel #network
- Rapid Spline-based Kernel Density Estimation for Bayesian Networks (YG, BL), pp. 700–703.
- ICPR-v3-2004-LifshitsBGRR #geometry
- Rehashing for Bayesian Geometric Hashing (ML, IB, RG, ER, MR), pp. 99–102.
- ICPR-v3-2004-MatsuiCUM #markov #monte carlo #recognition #using
- Bayesian Face Recognition using a Markov Chain Monte Carlo Method (AM, SC, FU, TM), pp. 918–921.
- ICPR-v4-2004-BoubchirFB #approximate #using
- Bayesian Denoising in the Wavelet-Domain Using an Analytical Approximate a-Stable Prior (LB, MJF, DB), pp. 889–892.
- ICPR-v4-2004-ChantasGL #image
- Non Stationary Bayesian Image Restoration (GKC, NPG, AL), pp. 689–692.
- ICPR-v4-2004-WangT #modelling #recognition
- Bayesian Face Recognition Based on Gaussian Mixture Models (XW, XT), pp. 142–145.
- ICPR-v4-2004-ZhouWG #estimation #using
- Tracking Periodic Motion using Bayesian Estimation (HZ, AMW, PRG), pp. 725–728.
- KDD-2004-JaroszewiczS #network #using
- Interestingness of frequent itemsets using Bayesian networks as background knowledge (SJ, DAS), pp. 178–186.
- KDD-2004-Poole #approach
- Estimating the size of the telephone universe: a Bayesian Mark-recapture approach (DP), pp. 659–664.
- KDD-2004-SmithE #framework #network
- A Bayesian network framework for reject inference (ATS, CE), pp. 286–295.
- KDD-2004-WrightY #distributed #network #privacy #semistructured data
- Privacy-preserving Bayesian network structure computation on distributed heterogeneous data (RNW, ZY), pp. 713–718.
- SIGIR-2004-YuTY #framework #information management #parametricity
- A nonparametric hierarchical bayesian framework for information filtering (KY, VT, SY), pp. 353–360.
- SIGIR-2004-Zhang #adaptation #classification #using
- Using bayesian priors to combine classifiers for adaptive filtering (YZ0), pp. 345–352.
- DAC-2003-FineZ #functional #generative #network #testing #using #verification
- Coverage directed test generation for functional verification using bayesian networks (SF, AZ), pp. 286–291.
- ICDAR-2003-ChoiCK #generative #network #online
- Generation of Handwritten Characters with Bayesian network based On-line Handwriting Recognizers (HIC, SJC, JHK), p. 995–?.
- ICDAR-2003-ChoK #modelling #network #online #recognition
- Bayesian Network Modeling of Hangul Characters for On-line Handwriting Recognition (SJC, JHK), pp. 207–211.
- ICEIS-v2-2003-BendouM #learning #network #semistructured data
- Learning Bayesian Networks From Noisy Data (MB, PM), pp. 26–33.
- ICEIS-v2-2003-CamposGM #abduction #network #probability #using
- Partial Abductive Inference in Bayesian Networks By Using Probability Trees (LMdC, JAG, SM), pp. 83–91.
- ICEIS-v2-2003-ColaceSFV #learning #network #ontology
- Ontology Learning Through Bayesian Networks (FC, MDS, PF, MV), pp. 430–433.
- ICEIS-v2-2003-Koehler #automation #database #health #learning #network
- Tool for Automatic Learning of Bayesian Networks From Database: An Application in the Health Area (CK), pp. 474–481.
- ICML-2003-CerquidesM #learning #modelling #naive bayes
- Tractable Bayesian Learning of Tree Augmented Naive Bayes Models (JC, RLdM), pp. 75–82.
- ICML-2003-Duff03a #approximate #markov
- Diffusion Approximation for Bayesian Markov Chains (MOD), pp. 139–146.
- ICML-2003-MooreW #learning #network
- Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning (AWM, WKW), pp. 552–559.
- ICML-2003-WongMCW #detection #network
- Bayesian Network Anomaly Pattern Detection for Disease Outbreaks (WKW, AWM, GFC, MMW), pp. 808–815.
- ICML-2003-ZhangXC #adaptation #learning
- Exploration and Exploitation in Adaptive Filtering Based on Bayesian Active Learning (YZ, WX, JPC), pp. 896–903.
- KDD-2003-FramAD #data mining #empirical #mining #safety
- Empirical Bayesian data mining for discovering patterns in post-marketing drug safety (DMF, JSA, WD), pp. 359–368.
- MLDM-2003-DeventerDNK #modelling #testing #using
- Using Test Plans for Bayesian Modeling (RD, JD, HN, OK), pp. 307–316.
- MLDM-2003-KimJ #network #using
- Using Bayesian Networks to Analyze Medical Data (ICK, YGJ), pp. 317–327.
- SEKE-2003-Morasca #approach #evaluation #testing
- A Bayesian Approach to Software Testing Evaluation (SM), pp. 706–713.
- SIGIR-2003-ZaragozaHT #ad hoc #information retrieval
- Bayesian extension to the language model for ad hoc information retrieval (HZ, DH, MET), pp. 4–9.
- SAC-2003-Leon-RojasMM #fuzzy #on the
- On the Fuzzy Bayesian Inference of Population Annoyance Level Caused by Noise Exposure (JMLR, VM, MM), pp. 227–234.
- ECIR-2002-CamposFH #documentation #network #retrieval
- A Layered Bayesian Network Model for Document Retrieval (LMdC, JMFL, JFH), pp. 169–182.
- ECIR-2002-TsikrikaL #documentation #network #using #web
- Combining Web Document Representations in a Bayesian Inference Network Model Using Link and Content-Based Evidence (TT, ML), pp. 53–72.
- ICML-2002-DashC #classification #naive bayes
- Exact model averaging with naive Bayesian classifiers (DD, GFC), pp. 91–98.
- ICML-2002-ThamDR #classification #learning #markov #monte carlo #using
- Sparse Bayesian Learning for Regression and Classification using Markov Chain Monte Carlo (SST, AD, KR), pp. 634–641.
- ICML-2002-ZhangL #bound #network
- Representational Upper Bounds of Bayesian Networks (HZ, CXL), pp. 674–681.
- ICPR-v1-2002-HungTL #3d #approach #segmentation #video
- A Bayesian Approach to Video Object Segmentation via Merging 3D Watershed Volumes (YPH, YPT, CCL), pp. 496–499.
- ICPR-v1-2002-LezorayC #image
- Bayesian Marker Extraction for Color Watershed in Segmenting Microscopic Images (OL, HC), pp. 739–742.
- ICPR-v1-2002-Mignotte #multi #parametricity
- Bayesian Rendering with Non-Parametric Multiscale Prior Model (MM), pp. 247–251.
- ICPR-v1-2002-Souafi-BensafiPLE #classification #documentation #network
- Bayesian Networks Classifiers Applied to Documents (SSB, MP, FL, HE), p. 483–?.
- ICPR-v2-2002-GargPH #classification #network
- Bayesian Networks as Ensemble of Classifiers (AG, VP, TSH), pp. 779–784.
- ICPR-v2-2002-SkaffAC
- Active Bayesian Color Constancy with Non-Uniform Sensors (SS, TA, JJC), pp. 681–684.
- ICPR-v3-2002-BaesensECV #classification #learning #markov #monte carlo #network #using
- Learning Bayesian Network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search (BB, MEP, RC, JV), pp. 49–52.
- ICPR-v3-2002-ChoudhuryRPP #detection #learning #network
- Boosting and Structure Learning in Dynamic Bayesian Networks for Audio-Visual Speaker Detection (TC, JMR, VP, AP), p. 789–?.
- ICPR-v3-2002-CooperWABCHKKLOVVJKLM #geometry #problem
- Bayesian Pot-Assembly from Fragments as Problems in Perceptual-Grouping and Geometric-Learning (DBC, ARW, SA, JB, YC, DH, KK, WK, FFL, XO, SV, EV, MSJ, BBK, DHL, DM), pp. 297–302.
- ICPR-v3-2002-QianCZ #approach #estimation #independence #multi
- A Bayesian Approach to Simultaneous Motion Estimation of Multiple Independently Moving Objects (GQ, RC, QZ), p. 309–?.
- ICPR-v3-2002-QiP #classification
- Context-Sensitive Bayesian Classifiers and Application to Mouse Pressure Pattern Classification (Y(Q, RWP), pp. 448–451.
- ICPR-v3-2002-SilvestreL #bound #classification #optimisation
- Optimization of Neural Classifiers Based on Bayesian Decision Boundaries and Idle Neurons Pruning (MRS, LLL), pp. 387–390.
- ICPR-v4-2002-MathisB #approach #classification #using
- Classification Using a Hierarchical Bayesian Approach (CM, TMB), p. 103–?.
- ICPR-v4-2002-StephensonMB #automation #network #recognition #speech
- Mixed Bayesian Networks with Auxiliary Variables for Automatic Speech Recognition (TAS, MMD, HB), p. 293–?.
- KDD-2002-AntalGF #clustering #learning #network #on the
- On the potential of domain literature for clustering and Bayesian network learning (PA, PG, GF), pp. 405–414.
- KDD-2002-RidgewayM #analysis #dataset
- Bayesian analysis of massive datasets via particle filters (GR, DM), pp. 5–13.
- KR-2002-BeygelzimerR #complexity #learning #network
- Inference Complexity as a Model-Selection Criterion for Learning Bayesian Networks (AB, IR), pp. 558–567.
- SIGIR-2002-ChaiCN #classification #online
- Bayesian online classifiers for text classification and filtering (KMAC, HLC, HTN), pp. 97–104.
- SAC-2002-ElishRF #collaboration #learning #network
- Evaluating collaborative software in supporting organizational learning with Bayesian Networks (MOE, DCR, JEF), pp. 992–996.
- DAC-2001-BhanjaR #dependence #modelling #network #probability #process #using
- Dependency Preserving Probabilistic Modeling of Switching Activity using Bayesian Networks (SB, NR), pp. 209–214.
- ICDAR-2001-ChoK #modelling #network #online #recognition
- Bayesian Network Modeling of Strokes and their Relationships for On-line Handwriting Recognition (SJC, JHK), pp. 86–90.
- ICDAR-2001-HasegawaAM #algorithm #online #recognition
- A Bayesian Bi-gram Scheme for HMM Online Handwriting Recognition Algorithm (TH, KA, TM), pp. 1012–1016.
- ICSM-2001-Chulani #analysis #modelling #quality
- Bayesian Analysis of Software Cost and Quality Models (SC), p. 565–?.
- ICEIS-v1-2001-GamboaF #approach #design
- Designing Intelligent Tutoring Systems: A Bayesian Approach (HG, ALNF), pp. 452–458.
- ICML-2001-ChuKO #framework
- A Unified Loss Function in Bayesian Framework for Support Vector Regression (WC, SSK, CJO), pp. 51–58.
- ICML-2001-GartnerF #classification #named
- WBCsvm: Weighted Bayesian Classification based on Support Vector Machines (TG, PAF), pp. 154–161.
- ICML-2001-HamerlyE #predict
- Bayesian approaches to failure prediction for disk drives (GH, CE), pp. 202–209.
- ICML-2001-NgJ #classification #convergence #feature model
- Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection (AYN, MIJ), pp. 377–384.
- ICML-2001-ZadroznyE #classification #naive bayes #probability
- Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers (BZ, CE), pp. 609–616.
- MLDM-2001-PhamWS #classification #detection #network
- Face Detection by Aggregated Bayesian Network Classifiers (TVP, MW, AWMS), pp. 249–262.
- SEKE-2001-VincenziNMDR #guidelines
- Bayesian-Learning Based Guidelines to determine Equivalente Mutants (AMRV, EYN, JCM, MED, RAFR), pp. 180–187.
- SAT-2001-HorvitzRGKSC #approach #problem
- A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) (EH, YR, CPG, HAK, BS, DMC), pp. 376–391.
- ICEIS-2000-Emery #case study #network
- The Use of Information Theory in the Construction of a Bayesian Belief Network: A Case Study (DEE), pp. 121–126.
- ICEIS-2000-MilhoF #development #network
- A User-Friendly Development Tool for Medical Diagnosis Based on Bayesian Networks (IM, ALNF), pp. 176–180.
- ICML-2000-Domingos #classification #problem
- Bayesian Averaging of Classifiers and the Overfitting Problem (PMD), pp. 223–230.
- ICML-2000-HsuHW #classification #naive bayes #why
- Why Discretization Works for Naive Bayesian Classifiers (CNH, HJH, TTW), pp. 399–406.
- ICML-2000-KimN #learning #network #set
- Learning Bayesian Networks for Diverse and Varying numbers of Evidence Sets (ZWK, RN), pp. 479–486.
- ICML-2000-LiB #approach #clustering #markov #modelling #using
- A Bayesian Approach to Temporal Data Clustering using Hidden Markov Models (CL, GB), pp. 543–550.
- ICML-2000-Strens #framework #learning
- A Bayesian Framework for Reinforcement Learning (MJAS), pp. 943–950.
- ICPR-v1-2000-HongengBN #framework #video
- Bayesian Framework for Video Surveillance Application (SH, FB, RN), pp. 1164–1170.
- ICPR-v1-2000-PalettaPP #analysis #learning #recognition #using
- Learning Temporal Context in Active Object Recognition Using Bayesian Analysis (LP, MP, AP), pp. 1695–1699.
- ICPR-v1-2000-PiaterG #learning #network #recognition
- Feature Learning for Recognition with Bayesian Networks (JHP, RAG), pp. 1017–1020.
- ICPR-v2-2000-LingC #bound #feature model #performance
- Fast and Efficient Feature Extraction Based on Bayesian Decision Boundaries (LLL, HMC), pp. 2390–2393.
- ICPR-v2-2000-RitterG #approach #identification #pattern matching #pattern recognition #recognition
- A Bayesian Approach to Object Identification in Pattern Recognition (GR, MTG), pp. 2418–2421.
- ICPR-v2-2000-VailayaJ #classification
- Reject Option for VQ-Based Bayesian Classification (AV, AKJ), pp. 2048–2051.
- ICPR-v2-2000-ValvenyM #documentation #framework #recognition #using
- Hand-Drawn Symbol Recognition in Graphic Documents Using Deformable Template Matching and a Bayesian Framework (EV, EM), pp. 2239–2242.
- ICPR-v3-2000-DemireklerKC #using
- Fusing Length and Voicing Information, and HMM Decision Using a Bayesian Causal Tree against Insufficient Training Data (MD, FK, TÇ), pp. 3106–3109.
- ICPR-v3-2000-LuJ #approach #image
- A New Bayesian Approach to Image Denoising with a Combination of MRFs and Pixon Method (QL, TJ), pp. 3734–3737.
- ICPR-v3-2000-MostafaPF #classification
- A Two-Step Fuzzy-Bayesian Classification for High Dimensional Data (MGHM, TCP, AAF), pp. 3421–3424.
- KDD-2000-KontkanenLMT #visualisation
- Unsupervised Bayesian visualization of high-dimensional data (PK, JL, PM, HT), pp. 325–329.
- KDD-2000-Tresp
- The generalized Bayesian committee machine (VT), pp. 130–139.
- KR-2000-Yelland #logic #network
- An Alternative Combination of Bayesian Networks and Description Logics (PMY), pp. 225–234.
- SIGIR-2000-AndroutsopoulosKCS #anti #comparison #email #keyword #naive bayes
- An experimental comparison of naive bayesian and keyword-based anti-spam filtering with personal e-mail messages (IA, JK, KC, CDS), pp. 160–167.
- CL-2000-Poole #information management #logic #representation
- Logic, Knowledge Representation, and Bayesian Decision Theory (DP), pp. 70–86.
- ICEIS-1999-Habrant #database #learning #network #predict #search-based
- Structure Learning of Bayesian Networks from Databases by Genetic Algorithms-Application to Time Series Prediction in Finance (JH), pp. 225–231.
- ICML-1999-LangleyS #analysis #classification #naive bayes
- Tractable Average-Case Analysis of Naive Bayesian Classifiers (PL, SS), pp. 220–228.
- ICML-1999-ZhengWT #lazy evaluation #learning #naive bayes
- Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ZZ, GIW, KMT), pp. 493–502.
- KDD-1999-Cerquides #induction
- Applying General Bayesian Techniques to Improve TAN Induction (JC), pp. 292–296.
- KDD-1999-DaviesM #dataset #network
- Bayesian Networks for Lossless Dataset Compression (SD, AWM), pp. 387–391.
- ICML-1998-CristianiniSS #classification #scalability
- Bayesian Classifiers Are Large Margin Hyperplanes in a Hilbert Space (NC, JST, PS), pp. 109–117.
- ICML-1998-FriedmanGL #classification #network #parametricity
- Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting (NF, MG, TJL), pp. 179–187.
- ICML-1998-Heskes #approach #learning #multi
- Solving a Huge Number of Similar Tasks: A Combination of Multi-Task Learning and a Hierarchical Bayesian Approach (TH), pp. 233–241.
- ICML-1998-RamachandranM #network #refinement
- Theory Refinement of Bayesian Networks with Hidden Variables (SR, RJM), pp. 454–462.
- ICPR-1998-BamfordL #analysis #segmentation
- Bayesian analysis of cell nucleus segmentation by a Viterbi search based active contour (PB, BCL), pp. 133–135.
- ICPR-1998-CallariSF #approach #estimation #nondeterminism
- Uncertainty in pose estimation: a Bayesian approach (FGC, GS, FPF), pp. 972–976.
- ICPR-1998-KrebsW #3d #automation #generative #recognition
- Automatic generation of Bayesian nets for 3D object recognition (BK, FMW), pp. 126–128.
- ICPR-1998-LamOX #classification #learning
- Application of Bayesian Ying-Yang criteria for selecting the number of hidden units with backpropagation learning to electrocardiogram classification (WKL, NO, LX), pp. 1686–1688.
- KDD-1998-KontkanenMST #classification #feature model #named
- BAYDA: Software for Bayesian Classification and Feature Selection (PK, PM, TS, HT), pp. 254–258.
- KR-1998-Jaeger #infinity #network #random #reasoning #relational
- Reasoning About Infinite Random Structures with Relational Bayesian Networks (MJ), pp. 570–581.
- LICS-1998-Jaeger #convergence #network #relational
- Convergence Results for Relational Bayesian Networks (MJ), pp. 44–55.
- ICSM-1997-ZivR #maintenance #modelling #nondeterminism #testing
- Constructing Bayesian-network models of software testing and maintenance uncertainties (HZ, DJR), p. 100–?.
- ICML-1997-SuematsuHL #approach #learning #markov
- A Bayesian Approach to Model Learning in Non-Markovian Environments (NS, AH, SL), pp. 349–357.
- KDD-1997-Domingos #why
- Why Does Bagging Work? A Bayesian Account and its Implications (PMD), pp. 155–158.
- KDD-1997-TurmonMP #identification
- Bayesian Inference for Identifying Solar Active Regions (MJT, SM, JP), pp. 267–270.
- AKDDM-1996-CheesemanS #classification
- Bayesian Classification (AutoClass): Theory and Results (PC, JS), pp. 153–180.
- AKDDM-1996-Heckerman #information management #network
- Bayesian Networks for Knowledge Discovery (DH), pp. 273–305.
- ICML-1996-DomingosP #classification #independence
- Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier (PMD, MJP), pp. 105–112.
- ICML-1996-EzawaSN #learning #network #risk management
- Learning Goal Oriented Bayesian Networks for Telecommunications Risk Management (KJE, MS, SWN), pp. 139–147.
- ICML-1996-FriedmanG #learning #network
- Discretizing Continuous Attributes While Learning Bayesian Networks (NF, MG), pp. 157–165.
- ICML-1996-SinghP #classification #learning #network #performance
- Efficient Learning of Selective Bayesian Network Classifiers (MS, GMP), pp. 453–461.
- ICML-1996-Suzuki #algorithm #learning #network #performance #using
- Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: An Efficient Algorithm Using the B & B Technique (JS), pp. 462–470.
- ICPR-1996-Brailovsky #approach #detection #probability
- An approach to outlier detection based on Bayesian probabilistic model (VLB), pp. 70–74.
- ICPR-1996-CoxMOY #feedback #image #named #retrieval
- PicHunter: Bayesian relevance feedback for image retrieval (IJC, MLM, SMO, PNY), pp. 361–369.
- ICPR-1996-DiasBD #classification #identification
- Results of the use of Bayesian classifiers for identification of breast cancer cell nuclei (ÂVD, FB, MRD), pp. 508–512.
- ICPR-1996-Gimelfarb96a #modelling #segmentation #simulation
- Gibbs models for Bayesian simulation and segmentation of piecewise-uniform textures (GLG), pp. 760–764.
- ICPR-1996-MoghaddamNP #image #similarity
- A Bayesian similarity measure for direct image matching (BM, CN, AP), pp. 350–358.
- ICPR-1996-PrantlGP #multi #network #using
- Active fusion using Bayesian networks applied to multi-temporal remote sensing imagery (MP, HG, AP), pp. 890–894.
- ICPR-1996-UtschickN #adaptation #network
- Bayesian adaptation of hidden layers in Boolean feedforward neural networks (WU, JAN), pp. 229–233.
- ICPR-1996-YimBA #segmentation #using
- Bayesian range segmentation using focus cues (CY, ACB, JKA), pp. 482–486.
- KDD-1996-Sahami #classification #dependence #learning
- Learning Limited Dependence Bayesian Classifiers (MS), pp. 335–338.
- CIKM-1995-ParkHC #automation #network #using
- Automatic Thesaurus Construction Using Bayesian Networks (YCP, YSH, KSC), pp. 212–217.
- ICML-1995-Cussens #algorithm #analysis #finite #learning
- A Bayesian Analysis of Algorithms for Learning Finite Functions (JC), pp. 142–149.
- ICML-1995-Heckerman #learning #network
- Learning With Bayesian Networks (Abstract) (DH), p. 588.
- ICML-1995-SinghP #algorithm #classification #comparison #induction
- A Comparison of Induction Algorithms for Selective and non-Selective Bayesian Classifiers (MS, GMP), pp. 497–505.
- KDD-1995-EzawaN #information management #modelling #network #using
- Knowledge Discovery in Telecommunication Services Data Using Bayesian Network Models (KJE, SWN), pp. 100–105.
- KDD-1995-Pazzani #approach #classification
- An Iterative Improvement Approach for the Discretization of Numeric Attributes in Bayesian Classifiers (MJP), pp. 228–233.
- KDD-1995-SpirtesM #learning #network
- Learning Bayesian Networks with Discrete Variables from Data (PS, CM), pp. 294–299.
- KDD-1995-Thiesson #network #quantifier #semistructured data
- Accelerated Quantification of Bayesian Networks with Incomplete Data (BT), pp. 306–311.
- SAC-1995-HalgamugeGG #fuzzy #network #problem #prototype
- A sub Bayesian nearest prototype neural network with fuzzy interpretability for diagnosis problems (SKH, CG, MG), pp. 445–449.
- ICML-1994-Muggleton #induction #logic programming
- Bayesian Inductive Logic Programming (SM), pp. 371–379.
- KDD-1994-HeckermanGC #learning #network #statistics
- Learning Bayesian Networks: The Combination of Knowledge and Statistical Data (DH, DG, DMC), pp. 85–96.
- CIKM-1993-EickJ #algorithm #classification #learning #search-based
- Learning Bayesian Classification Rules through Genetic Algorithms (CFE, DJ), pp. 305–313.
- ICML-1993-Connolly #clustering #concept #network
- Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering (DC), pp. 65–72.
- ICML-1993-Schwalb #compilation #network
- Compiling Bayesian Networks into Neural Networks (ES), pp. 291–297.
- SIGIR-1993-TzerasH #automation #network
- Automatic Indexing Based on Bayesian Inference Networks (KT, SH), pp. 22–34.
- KDD-1991-WuSO #classification #heuristic #integration
- Integration of Heuristic and Bayesian Approaches in a Pattern-Classification System (QW, PS, AO), pp. 249–260.
- CHI-1989-Cole #comprehension #reasoning #visual notation
- Understanding Bayesian reasoning via graphical displays (WGC), pp. 381–386.
- ML-1988-CheesemanKSSTF #classification #named
- AutoClass: A Bayesian Classification System (PC, JK, MS, JS, WT, DF), pp. 54–64.
- SIGIR-1984-KraftB #behaviour #information retrieval #roadmap
- Advances in a Bayesian Decision Model of User Stopping Behaviour for Scanning the Output of an Information Retrieval System (DHK, DAB), pp. 421–433.
- ICSE-1976-Chandy #design #modelling
- Bayesian Models of Design Based on Intuition (KMC), pp. 281–285.