Travelled to:
1 × Czech Republic
1 × Denmark
1 × Finland
1 × France
1 × Germany
1 × Italy
1 × Spain
1 × United Kingdom
2 × The Netherlands
2 × USA
Collaborated with:
∅ B.Intrigila U.de'Liguoro A.Piperno A.R.Meyer J.C.Mitchell E.Moggi
Talks about:
calculus (5) combin (4) problem (2) monoid (2) type (2) rule (2) polymorph (1) hierarchi (1) cartesian (1) translat (1)
Person: Richard Statman
DBLP: Statman:Richard
Contributed to:
Wrote 12 papers:
- TLCA-2007-IntrigilaS #calculus
- The ω-Rule is Π¹₁-Complete in the λβ-Calculus (BI, RS), pp. 178–193.
- LICS-2004-IntrigilaS #calculus
- The ω-Rule is Π⁰₂-Hard in the λβ-Calculus (BI, RS), pp. 202–210.
- LICS-2002-Statman #calculus #on the
- On The λ Y Calculus (RS), pp. 159–166.
- RTA-2000-Statman #combinator #on the #problem #word
- On the Word Problem for Combinators (RS), pp. 203–213.
- TLCA-1999-Statman #consistency #equation #theorem
- Consequences of Jacopini’s Theorem: Consistent Equalities and Equations (RS), pp. 355–364.
- CSL-1998-Statman #morphism
- Morphisms and Partitions of V-sets (RS), pp. 313–322.
- RTA-1997-Statman #combinator #effectiveness #reduction
- Effective Reduction and Conversion Strategies for Combinators (RS), pp. 299–307.
- CSL-1996-Statman #monad #on the
- On Cartesian Monoids (RS), pp. 446–459.
- LICS-1992-LiguoroPS #λ-calculus
- Retracts in simply typed λβη-calculus (Ud, AP, RS), pp. 461–469.
- LICS-1991-Statman #combinator #monad
- Freyd’s Hierarchy of Combinator Monoids (RS), pp. 186–190.
- POPL-1987-MeyerMMS #polymorphism #λ-calculus
- Empty Types in Polymorphic λ Calculus (ARM, JCM, EM, RS), pp. 253–262.
- LICS-1986-Statman #combinator #on the #problem
- On Translating λ Terms into Combinators; The Basis Problem (RS), pp. 378–382.