BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Portugal
1 × USA
1 × United Kingdom
2 × Italy
2 × Spain
Collaborated with:
F.Cacheda V.Formoso D.Fernández V.Plachouras I.Ounis F.Puentes C.Guerrero Á.Viña R.Baraglia R.Perego F.Silvestri
Talks about:
recommend (2) retriev (2) analysi (2) search (2) inform (2) use (2) neighborhood (1) architectur (1) comparison (1) distribut (1)

Person: Victor Carneiro

DBLP DBLP: Carneiro:Victor

Contributed to:

KDIR 20122012
CIKM 20112011
RecSys 20092009
ECIR 20072007
ECIR 20052005
ICEIS v4 20042004
ECIR 20032003

Wrote 7 papers:

KDIR-2012-FormosoFCC #performance #recommendation #using
Using Neighborhood Pre-computation to Increase Recommendation Efficiency (VF, DF, FC, VC), pp. 333–335.
CIKM-2011-CachedaCFF #algorithm #analysis #dataset #nearest neighbour
Improving k-nearest neighbors algorithms: practical application of dataset analysis (FC, VC, DF, VF), pp. 2253–2256.
RecSys-2009-BaragliaCCFFPS #approach #query #recommendation
Search shortcuts: a new approach to the recommendation of queries (RB, FC, VC, DF, VF, RP, FS), pp. 77–84.
ECIR-2007-CachedaCPO #clustering #comparison #information retrieval #performance
Performance Comparison of Clustered and Replicated Information Retrieval Systems (FC, VC, VP, IO), pp. 124–135.
ECIR-2005-CachedaCPO #analysis #architecture #distributed #information retrieval #network
Network Analysis for Distributed Information Retrieval Architectures (FC, VC, VP, IO), pp. 527–529.
ICEIS-v4-2004-PuentesC #collaboration
Virtual Active IP Node for Collaborative Environments (FP, VC), pp. 49–54.
ECIR-2003-CachedaCGV #data type #hybrid #optimisation #strict #using #web
Optimization of Restricted Searches in Web Directories Using Hybrid Data Structures (FC, VC, CG, ÁV), pp. 436–451.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.