Travelled to:
1 × Australia
1 × France
1 × Germany
1 × Ireland
1 × United Kingdom
2 × Canada
4 × USA
Collaborated with:
Z.Ghahramani S.S.Keerthi R.W.White S.Park B.L.Tseng L.Li J.Yan D.L.Wild C.J.Ong L.Zhang J.Yang M.Zinkevich A.Thomas H.Wang X.He M.Chang Y.Song T.Moon C.Liao Z.Zheng Y.Chang P.N.Bennett S.T.Dumais P.Bailey F.Borisyuk X.Cui T.Beaupre N.Motgi A.Phadke S.Chakraborty J.Zachariah
Talks about:
search (4) model (4) learn (4) regress (3) person (3) behavior (2) support (2) vector (2) prefer (2) onlin (2)
Person: Wei Chu
DBLP: Chu:Wei
Contributed to:
Wrote 12 papers:
- SIGIR-2014-YanCW #modelling #personalisation
- Cohort modeling for enhanced personalized search (JY, WC, RWW), pp. 505–514.
- SIGIR-2013-WangHCSWC #adaptation #personalisation #ranking #web
- Personalized ranking model adaptation for web search (HW, XH, MWC, YS, RWW, WC), pp. 323–332.
- SIGIR-2012-BennettWCDBBC #behaviour #modelling #personalisation
- Modeling the impact of short- and long-term behavior on search personalization (PNB, RWW, WC, STD, PB, FB, XC), pp. 185–194.
- CIKM-2011-ZhangYCT #detection
- A machine-learned proactive moderation system for auction fraud detection (LZ, JY, WC, BLT), pp. 2501–2504.
- KDD-2011-ChuZLTT #data type #learning #online
- Unbiased online active learning in data streams (WC, MZ, LL, AT, BLT), pp. 195–203.
- CIKM-2010-MoonLCLZC #feedback #learning #online #ranking #realtime #using
- Online learning for recency search ranking using real-time user feedback (TM, LL, WC, CL, ZZ, YC), pp. 1501–1504.
- KDD-2009-ChuPBMPCZ #analysis #behaviour #case study #exclamation
- A case study of behavior-driven conjoint analysis on Yahoo!: front page today module (WC, STP, TB, NM, AP, SC, JZ), pp. 1097–1104.
- RecSys-2009-ParkC #recommendation
- Pairwise preference regression for cold-start recommendation (STP, WC), pp. 21–28.
- ICML-2005-ChuG #learning #process
- Preference learning with Gaussian processes (WC, ZG), pp. 137–144.
- ICML-2005-ChuK
- New approaches to support vector ordinal regression (WC, SSK), pp. 145–152.
- ICML-2004-ChuGW #predict #visual notation
- A graphical model for protein secondary structure prediction (WC, ZG, DLW).
- ICML-2001-ChuKO #framework
- A Unified Loss Function in Bayesian Framework for Support Vector Regression (WC, SSK, CJO), pp. 51–58.