Travelled to:
1 × China
1 × Finland
1 × France
1 × Germany
1 × Spain
1 × United Kingdom
2 × Canada
7 × USA
Collaborated with:
J.M.Hernández-Lobato D.A.Knowles K.A.Heller N.Houlsby Y.Gal C.Heaukulani K.Palla W.Chu A.Shah Y.Chen J.V.Gael D.Lopez-Paz C.Reed R.P.Adams F.Doshi-Velez A.Azran E.Snelson A.Scibior D.Hernández-Lobato Y.Wu T.Iwata S.Mohamed B.Póczos J.G.Schneider A.G.Wilson S.Williamson D.L.Wild R.Salakhutdinov S.T.Roweis X.Zhu J.D.Lafferty A.D.Gordon H.Ge M.Wan S.Bratieres N.Quadrianto S.Nowozin Y.Saatçi Y.W.Teh Y.(.Qi T.P.Minka R.W.Picard N.J.Adams A.J.Storkey C.K.I.Williams M.A.Gelbart M.W.Hoffman R.P.Adams S.Sra A.J.Smola B.Schölkopf D.K.Duvenaud J.R.Lloyd R.B.Grosse J.B.Tenenbaum S.Lacoste-Julien A.Davies G.Kasneci T.Graepel O.Kammar M.Vákár S.Staton H.Yang Y.Cai K.Ostermann Sean K. Moss C.Heunen
Talks about:
process (11) model (9) gaussian (6) bayesian (6) probabilist (5) predict (5) learn (5) infer (5) latent (4) data (4)
Person: Zoubin Ghahramani
DBLP: Ghahramani:Zoubin
Facilitated 1 volumes:
Contributed to:
Wrote 40 papers:
- ICML-2015-GalCG #category theory #estimation #multi #process
- Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data (YG, YC, ZG), pp. 645–654.
- ICML-2015-GeCWG #distributed #modelling #process
- Distributed Inference for Dirichlet Process Mixture Models (HG, YC, MW, ZG), pp. 2276–2284.
- ICML-2015-Hernandez-Lobato #feature model #multi #probability
- A Probabilistic Model for Dirty Multi-task Feature Selection (DHL, JMHL, ZG), pp. 1073–1082.
- ICML-2015-Hernandez-Lobato15a #constraints #optimisation #predict
- Predictive Entropy Search for Bayesian Optimization with Unknown Constraints (JMHL, MAG, MWH, RPA, ZG), pp. 1699–1707.
- ICML-2015-ShahKG #algorithm #empirical #probability #process
- An Empirical Study of Stochastic Variational Inference Algorithms for the Beta Bernoulli Process (AS, DAK, ZG), pp. 1594–1603.
- ICML-c2-2014-BratieresQNG #graph #grid #predict #process #scalability
- Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications (SB, NQ, SN, ZG), pp. 334–342.
- ICML-c2-2014-GalG #parallel #process #using
- Pitfalls in the use of Parallel Inference for the Dirichlet Process (YG, ZG), pp. 208–216.
- ICML-c2-2014-HeaukulaniKG
- Beta Diffusion Trees (CH, DAK, ZG), pp. 1809–1817.
- ICML-c2-2014-Hernandez-LobatoHG #matrix #modelling #probability #scalability
- Stochastic Inference for Scalable Probabilistic Modeling of Binary Matrices (JMHL, NH, ZG), pp. 379–387.
- ICML-c2-2014-Hernandez-LobatoHG14a #matrix #probability
- Probabilistic Matrix Factorization with Non-random Missing Data (JMHL, NH, ZG), pp. 1512–1520.
- ICML-c2-2014-HoulsbyHG #learning #matrix #robust
- Cold-start Active Learning with Robust Ordinal Matrix Factorization (NH, JMHL, ZG), pp. 766–774.
- ICML-c2-2014-KnowlesGP #infinity #metric #normalisation #random #using
- A reversible infinite HMM using normalised random measures (DAK, ZG, KP), pp. 1998–2006.
- ICML-c2-2014-Lopez-PazSSGS #analysis #component #random
- Randomized Nonlinear Component Analysis (DLP, SS, AJS, ZG, BS), pp. 1359–1367.
- ICML-c1-2013-HeaukulaniG #modelling #network #probability #social
- Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks (CH, ZG), pp. 275–283.
- ICML-c2-2013-Lopez-PazHG #dependence #multi #process
- Gaussian Process Vine Copulas for Multivariate Dependence (DLP, JMHL, ZG), pp. 10–18.
- ICML-c3-2013-DuvenaudLGTG #composition #kernel #parametricity
- Structure Discovery in Nonparametric Regression through Compositional Kernel Search (DKD, JRL, RBG, JBT, ZG), pp. 1166–1174.
- ICML-c3-2013-ReedG #process #scalability
- Scaling the Indian Buffet Process via Submodular Maximization (CR, ZG), pp. 1013–1021.
- ICML-c3-2013-WuHG #modelling #multi
- Dynamic Covariance Models for Multivariate Financial Time Series (YW, JMHL, ZG), pp. 558–566.
- KDD-2013-IwataSG #online #process #social
- Discovering latent influence in online social activities via shared cascade poisson processes (TI, AS, ZG), pp. 266–274.
- KDD-2013-Lacoste-JulienPDKGG #knowledge base #named #scalability
- SIGMa: simple greedy matching for aligning large knowledge bases (SLJ, KP, AD, GK, TG, ZG), pp. 572–580.
- ICML-2012-MohamedHG #learning
- Evaluating Bayesian and L1 Approaches for Sparse Unsupervised Learning (SM, KAH, ZG), p. 91.
- ICML-2012-PallaKG #infinity #network
- An Infinite Latent Attribute Model for Network Data (KP, DAK, ZG), p. 55.
- ICML-2012-PoczosGS #dependence #kernel #metric
- Copula-based Kernel Dependency Measures (BP, ZG, JGS), p. 213.
- ICML-2012-WilsonKG #network #process
- Gaussian Process Regression Networks (AGW, DAK, ZG), p. 149.
- ICML-2011-KnowlesGG #algorithm #message passing
- Message Passing Algorithms for the Dirichlet Diffusion Tree (DAK, JVG, ZG), pp. 721–728.
- ICML-2009-AdamsG #learning #named #parametricity
- Archipelago: nonparametric Bayesian semi-supervised learning (RPA, ZG), pp. 1–8.
- ICML-2009-Doshi-VelezG #process
- Accelerated sampling for the Indian Buffet Process (FDV, ZG), pp. 273–280.
- ICML-2008-GaelSTG #infinity #markov
- Beam sampling for the infinite hidden Markov model (JVG, YS, YWT, ZG), pp. 1088–1095.
- ICML-2008-HellerWG #modelling #statistics
- Statistical models for partial membership (KAH, SW, ZG), pp. 392–399.
- ICML-2006-AzranG #approach #clustering #data-driven
- A new approach to data driven clustering (AA, ZG), pp. 57–64.
- ICML-2005-ChuG #learning #process
- Preference learning with Gaussian processes (WC, ZG), pp. 137–144.
- ICML-2005-HellerG #clustering
- Bayesian hierarchical clustering (KAH, ZG), pp. 297–304.
- ICML-2005-SnelsonG #approximate #predict
- Compact approximations to Bayesian predictive distributions (ES, ZG), pp. 840–847.
- ICML-2004-ChuGW #predict #visual notation
- A graphical model for protein secondary structure prediction (WC, ZG, DLW).
- ICML-2004-QiMPG #automation #predict
- Predictive automatic relevance determination by expectation propagation (Y(Q, TPM, RWP, ZG).
- ICML-2003-SalakhutdinovRG #optimisation
- Optimization with EM and Expectation-Conjugate-Gradient (RS, STR, ZG), pp. 672–679.
- ICML-2003-ZhuGL #learning #using
- Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (XZ, ZG, JDL), pp. 912–919.
- ICPR-v3-2000-AdamsSWG #named
- MFDTs: Mean Field Dynamic Trees (NJA, AJS, CKIW, ZG), pp. 3151–3154.
- Haskell-2015-ScibiorGG #monad #probability #programming
- Practical probabilistic programming with monads (AS, ZG, ADG), pp. 165–176.
- POPL-2018-ScibiorKVSYCOMH #higher-order #validation
- Denotational validation of higher-order Bayesian inference (AS, OK, MV, SS, HY, YC, KO, SKM, CH, ZG), p. 29.