Travelled to:
1 × Australia
1 × Chile
1 × France
1 × Ireland
1 × Portugal
2 × China
3 × USA
Collaborated with:
S.Ma M.Zhang Y.Zhang K.Zhang K.Zhou J.Nie C.Wang Y.Zhang M.Kan A.Cui L.Ru S.Huo Z.Liu X.He M.Gao K.Sugiyama H.Zhang Y.Fu R.Xiang M.Wang G.Lai Q.Xing C.Wei R.Cen B.Zhou Y.Chen J.Tang J.Sun X.Zhu M.Zheng J.Qian L.Yang D.Hou T.Sakai Z.Dou T.Yamamoto M.P.Kato R.Song M.Iwata
Talks about:
model (7) search (5) click (5) user (5) base (5) web (5) sentiment (3) incorpor (3) result (3) level (3)
Person: Yiqun Liu
DBLP: Liu:Yiqun
Contributed to:
Wrote 19 papers:
- SIGIR-2015-LiuCTS0MZ #predict
- Different Users, Different Opinions: Predicting Search Satisfaction with Mouse Movement Information (YL, YC, JT, JS, MZ, SM, XZ), pp. 493–502.
- SIGIR-2015-LiuLZ0M #web
- Influence of Vertical Result in Web Search Examination (ZL, YL, KZ, MZ, SM), pp. 193–202.
- SIGIR-2015-WangLWZNM #behaviour #modelling
- Incorporating Non-sequential Behavior into Click Models (CW, YL, MW, KZ, JYN, SM), pp. 283–292.
- CIKM-2014-Huo0LM #performance #query
- Improving Tail Query Performance by Fusion Model (SH, MZ, YL, SM), pp. 559–568.
- CIKM-2014-LiuWZNZM #web
- From Skimming to Reading: A Two-stage Examination Model for Web Search (YL, CW, KZ, JYN, MZ, SM), pp. 849–858.
- CIKM-2014-ZhangZZLM #comprehension #constraints #matrix
- Understanding the Sparsity: Augmented Matrix Factorization with Sampled Constraints on Unobservables (YZ, MZ, YZ, YL, SM), pp. 1189–1198.
- SIGIR-2014-HeGKLS #predict #web
- Predicting the popularity of web 2.0 items based on user comments (XH, MG, MYK, YL, KS), pp. 233–242.
- SIGIR-2014-ZhangL0ZLM #analysis #modelling #recommendation #sentiment
- Explicit factor models for explainable recommendation based on phrase-level sentiment analysis (YZ, GL, MZ, YZ, YL, SM), pp. 83–92.
- SIGIR-2014-ZhangZ0LM #classification #overview #sentiment
- Do users rate or review?: boost phrase-level sentiment labeling with review-level sentiment classification (YZ, HZ, MZ, YL, SM), pp. 1027–1030.
- CIKM-2013-XingLNZMZ #modelling
- Incorporating user preferences into click models (QX, YL, JYN, MZ, SM, KZ), pp. 1301–1310.
- HT-2013-ZhangZLM #collaboration #framework #matrix
- A general collaborative filtering framework based on matrix bordered block diagonal forms (YZ, MZ, YL, SM), pp. 219–224.
- SIGIR-2013-SakaiDYLZKSI #mining #summary #topic
- Summary of the NTCIR-10 INTENT-2 task: subtopic mining and search result diversification (TS, ZD, TY, YL, MZ, MPK, RS, MI), pp. 761–764.
- SIGIR-2013-WangLZMZQZ #modelling
- Incorporating vertical results into search click models (CW, YL, MZ, SM, MZ, JQ, KZ), pp. 503–512.
- SIGIR-2013-ZhangZLM #collaboration #matrix
- Improve collaborative filtering through bordered block diagonal form matrices (YZ, MZ, YL, SM), pp. 313–322.
- CIKM-2012-CuiZLMZ #twitter
- Discover breaking events with popular hashtags in twitter (AC, MZ, YL, SM, KZ), pp. 1794–1798.
- SIGIR-2012-WeiLZMRZ #novel #web
- Fighting against web spam: a novel propagation method based on click-through data (CW, YL, MZ, SM, LR, KZ), pp. 395–404.
- TPDL-2012-CuiYHKLZM #named #web
- PrEV: Preservation Explorer and Vault for Web 2.0 User-Generated Content (AC, LY, DH, MYK, YL, MZ, SM), pp. 101–112.
- CIKM-2009-CenLZZRM
- Exploring relevance for clicks (RC, YL, MZ, BZ, LR, SM), pp. 1847–1850.
- CIKM-2007-FuXLZM #formal method
- A CDD-based formal model for expert finding (YF, RX, YL, MZ, SM), pp. 881–884.