BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
search (35)
model (28)
user (19)
predict (17)
data (17)

Stem click$ (all stems)

120 papers:

CHICHI-2015-HaqueNV #named #using
Myopoint: Pointing and Clicking Using Forearm Mounted Electromyography and Inertial Motion Sensors (FH, MN, DV), pp. 3653–3656.
HCIDUXU-IXD-2015-Posetti #comprehension #design #experience #user interface
Clicking Through Endless Seas: Understanding User Experience in the Design of Journalistic Websites (BP), pp. 82–93.
KDDKDD-2015-LalmasLSST #experience
Promoting Positive Post-Click Experience for In-Stream Yahoo Gemini Users (ML, JL, GS, FS, GT), pp. 1929–1938.
KDDKDD-2015-LiLMWP #predict #timeline #twitter
Click-through Prediction for Advertising in Twitter Timeline (CL, YL, QM, DW, SP), pp. 1959–1968.
MLDMMLDM-2015-SejalSTAVIP #graph #query #similarity
Query Click and Text Similarity Graph for Query Suggestions (DS, KGS, VT, DA, KRV, SSI, LMP), pp. 328–341.
SIGIRSIGIR-2015-Barreda-Angeles #behaviour #latency
Unconscious Physiological Effects of Search Latency on Users and Their Click Behaviour (MBÁ, IA, XB, BBC, APB), pp. 203–212.
SIGIRSIGIR-2015-ChuklinMR #information retrieval #modelling #tutorial
Advanced Click Models and their Applications to IR: SIGIR 2015 Tutorial (AC, IM, MdR), pp. 1111–1112.
SIGIRSIGIR-2015-ChuklinMR15a #modelling #tutorial #web
An Introduction to Click Models for Web Search: SIGIR 2015 Tutorial (AC, IM, MdR), pp. 1113–1115.
SIGIRSIGIR-2015-WangLWZNM #behaviour #modelling
Incorporating Non-sequential Behavior into Click Models (CW, YL, MW, KZ, JYN, SM), pp. 283–292.
CHICHI-2014-XiaoLH #smarttech
Expanding the input expressivity of smartwatches with mechanical pan, twist, tilt and click (RX, GL, CH), pp. 193–196.
CIKMCIKM-2014-MarkovKNSRC #effectiveness #metric #modelling
Vertical-Aware Click Model-Based Effectiveness Metrics (IM, EK, VN, PS, MdR, FC), pp. 1867–1870.
CIKMCIKM-2014-YeLQPM #generative
A Generative Model for Generating Relevance Labels from Human Judgments and Click-Logs (XY, JL, ZQ, BP, DM), pp. 1907–1910.
ECIRECIR-2014-HofmannSBR #bias #evaluation #recommendation
Effects of Position Bias on Click-Based Recommender Evaluation (KH, AS, AB, MdR), pp. 624–630.
ECIRECIR-2014-SchuthSWR #case study #optimisation #using
Optimizing Base Rankers Using Clicks — A Case Study Using BM25 (AS, FS, SW, MdR), pp. 75–87.
KDDKDD-2014-TagamiHTOTT
Filling context-ad vocabulary gaps with click logs (YT, TH, YT, SO, KT, AT), pp. 1955–1964.
RecSysRecSys-2014-YiHZLR #personalisation
Beyond clicks: dwell time for personalization (XY, LH, EZ, NNL, SR), pp. 113–120.
SIGIRSIGIR-2014-ChuklinZSSR #modelling
Evaluating intuitiveness of vertical-aware click models (AC, KZ, AS, FS, MdR), pp. 1075–1078.
SIGIRSIGIR-2014-JiangHA #behaviour
Searching, browsing, and clicking in a search session: changes in user behavior by task and over time (JJ, DH, JA), pp. 607–616.
SIGIRSIGIR-2014-KimHWZ #predict
Comparing client and server dwell time estimates for click-level satisfaction prediction (YK, AHA, RWW, IZ), pp. 895–898.
SIGIRSIGIR-2014-LeeTC #behaviour #multi #risk management
Characterizing multi-click search behavior and the risks and opportunities of changing results during use (CJL, JT, SdlC), pp. 515–524.
SIGIRSIGIR-2014-LiDWDCZ #2d #query
A two-dimensional click model for query auto-completion (YL, AD, HW, HD, YC, CZ), pp. 455–464.
SIGIRSIGIR-2014-PanYMLNR #image #learning
Click-through-based cross-view learning for image search (YP, TY, TM, HL, CWN, YR), pp. 717–726.
SIGIRSIGIR-2014-SunL #towards
Towards context-aware search with right click (AS, CHL), pp. 847–850.
CHICHI-2013-KukkaOKGO #interactive #visual notation #what
What makes you click: exploring visual signals to entice interaction on public displays (HK, HO, VK, JG, TO), pp. 1699–1708.
HCIHCI-UC-2013-BeldadS #experience #ll #online #trust
It Was Nice with the Brick So Now I’ll Click: The Effects of Offline and Online Experience, Perceived Benefits, and Trust on Dutch Consumers’ Online Repeat Purchase Intention (AB, MS), pp. 371–380.
ICEISICEIS-v1-2013-LaporteDM #documentation #multi #web
Multiple Clicks Model for Web Search of Multi-clickable Documents (LL, SD, JM), pp. 298–303.
CIKMCIKM-2013-ChuklinSR #modelling
Modeling clicks beyond the first result page (AC, PS, MdR), pp. 1217–1220.
CIKMCIKM-2013-KharitonovMSO #using
Using historical click data to increase interleaving sensitivity (EK, CM, PS, IO), pp. 679–688.
CIKMCIKM-2013-XingLNZMZ #modelling
Incorporating user preferences into click models (QX, YL, JYN, MZ, SM, KZ), pp. 1301–1310.
ECIRECIR-2013-SaadK #adaptation #intranet #navigation
Exploiting Click Logs for Adaptive Intranet Navigation (SZS, UK), pp. 792–795.
KDDKDD-2013-BaiJS #automation #generative #set
Exploiting user clicks for automatic seed set generation for entity matching (XB, FPJ, SHS), pp. 980–988.
KDDKDD-2013-McMahanHSYEGNPDGCLWHBK #predict
Ad click prediction: a view from the trenches (HBM, GH, DS, MY, DE, JG, LN, TP, ED, DG, SC, DL, MW, AMH, TB, JK), pp. 1222–1230.
KDDKDD-2013-WangBLZL #predict
Psychological advertising: exploring user psychology for click prediction in sponsored search (TW, JB, SL, YZ, TYL), pp. 563–571.
SIGIRSIGIR-2013-ChuklinSR #information retrieval #metric #modelling
Click model-based information retrieval metrics (AC, PS, MdR), pp. 493–502.
SIGIRSIGIR-2013-Ekstrand-AbuegPKSYI #automation #evaluation
Exploring semi-automatic nugget extraction for Japanese one click access evaluation (MEA, VP, MPK, TS, TY, MI), pp. 749–752.
SIGIRSIGIR-2013-JagarlamudiG #modelling #web
Modeling click-through based word-pairs for web search (JJ, JG), pp. 483–492.
SIGIRSIGIR-2013-KatoSYI #bound #evaluation #robust
Report from the NTCIR-10 1CLICK-2 Japanese subtask: baselines, upperbounds and evaluation robustness (MPK, TS, TY, MI), pp. 753–756.
SIGIRSIGIR-2013-WangLZMZQZ #modelling
Incorporating vertical results into search click models (CW, YL, MZ, SM, MZ, JQ, KZ), pp. 503–512.
DRRDRR-2012-NagyT #named #performance #verification
VeriClick: an efficient tool for table format verification (GN, MT).
VLDBVLDB-2012-HallBBGN
Processing a Trillion Cells per Mouse Click (AH, OB, RB, SG, MN), pp. 1436–1446.
CHICHI-2012-FourneyLMT #documentation #exclamation #interface #online #quote
“Then click ok!”: extracting references to interface elements in online documentation (AF, BL, RM, MAT), pp. 35–38.
CIKMCIKM-2012-AshkanC #analysis #behaviour #modelling
Modeling browsing behavior for click analysis in sponsored search (AA, CLAC), pp. 2015–2019.
CIKMCIKM-2012-AzimiZZNMF #visual notation
Visual appearance of display ads and its effect on click through rate (JA, RZ, YZ, VN, JM, XF), pp. 495–504.
CIKMCIKM-2012-DuanKZ #empirical #query #representation
Click patterns: an empirical representation of complex query intents (HD, EK, CZ), pp. 1035–1044.
CIKMCIKM-2012-HofmannWR #comparison
Estimating interleaved comparison outcomes from historical click data (KH, SW, MdR), pp. 1779–1783.
CIKMCIKM-2012-KolesnikovLT #predict
Predicting CTR of new ads via click prediction (AK, YL, VT), pp. 2547–2550.
CIKMCIKM-2012-MendesMZB #graph #similarity #using
Measuring website similarity using an entity-aware click graph (PNM, PM, HZ, RB), pp. 1697–1701.
CIKMCIKM-2012-WangC #learning #predict #word
Learning to predict the cost-per-click for your ad words (CJW, HHC), pp. 2291–2294.
CIKMCIKM-2012-WuJZ #behaviour
Serial position effects of clicking behavior on result pages returned by search engines (MW, SJ, YZ), pp. 2411–2414.
CIKMCIKM-2012-XinKALH #design #modelling
Do ads compete or collaborate?: designing click models with full relationship incorporated (XX, IK, RA, MRL, HH), pp. 1839–1843.
ECIRECIR-2012-LungleyKS #adaptation #domain model #interactive #learning #modelling #web
Learning Adaptive Domain Models from Click Data to Bootstrap Interactive Web Search (DL, UK, DS), pp. 527–530.
KDDKDD-2012-ChengZAMZZN #multi #predict
Multimedia features for click prediction of new ads in display advertising (HC, RvZ, JA, EM, RZ, YZ, VN), pp. 777–785.
KDDKDD-2012-ChenY #predict
Position-normalized click prediction in search advertising (YC, TWY), pp. 795–803.
SIGIRSIGIR-2012-AgarwalCEW #online #personalisation #recommendation
Personalized click shaping through lagrangian duality for online recommendation (DA, BCC, PE, XW), pp. 485–494.
SIGIRSIGIR-2012-ChinS #analysis
Survival analysis of click logs (SCC, WNS), pp. 1149–1150.
SIGIRSIGIR-2012-KoumpouriS #effectiveness #feedback #query #retrieval
Queries without clicks: evaluating retrieval effectiveness based on user feedback (AK, VS), pp. 1133–1134.
SIGIRSIGIR-2012-Sakai #evaluation #information retrieval #mobile #towards #what
Towards zero-click mobile IR evaluation: knowing what and knowing when (TS), pp. 1157–1158.
SIGIRSIGIR-2012-WeiLZMRZ #novel #web
Fighting against web spam: a novel propagation method based on click-through data (CW, YL, MZ, SM, LR, KZ), pp. 395–404.
CHICHI-2011-HuangWD #problem #using
No clicks, no problem: using cursor movements to understand and improve search (JH, RWW, STD), pp. 1225–1234.
CIKMCIKM-2011-CuiLYJJHGCD #framework #multi #random
Multi-view random walk framework for search task discovery from click-through log (JC, HL, JY, LJ, RJ, JH, YG, ZC, XD), pp. 135–140.
CIKMCIKM-2011-HofmannWR #probability
A probabilistic method for inferring preferences from clicks (KH, SW, MdR), pp. 249–258.
CIKMCIKM-2011-KimQYL #approach #behaviour
Advertiser-centric approach to understand user click behavior in sponsored search (SK, TQ, HY, TYL), pp. 2121–2124.
CIKMCIKM-2011-KiselevaAB #case study #mining #query
Mining query structure from click data: a case study of product queries (JK, EA, DB), pp. 2217–2220.
CIKMCIKM-2011-LeeC #collaboration #generative
Collaborative blacklist generation via searches-and-clicks (LHL, HHC), pp. 2153–2156.
CIKMCIKM-2011-LymberopoulosZKBL #mobile #predict
Location-aware click prediction in mobile local search (DL, PZ, ACK, KB, JL), pp. 413–422.
CIKMCIKM-2011-SakaiKS #information management
Click the search button and be happy: evaluating direct and immediate information access (TS, MPK, YIS), pp. 621–630.
CIKMCIKM-2011-YiA #query #web
Discovering missing click-through query language information for web search (XY, JA), pp. 153–162.
ECIRECIR-2011-SeoCKL
Smoothing Click Counts for Aggregated Vertical Search (JS, WBC, KHK, JHL), pp. 387–398.
KDDKDD-2011-AgarwalCEW #multi
Click shaping to optimize multiple objectives (DA, BCC, PE, XW), pp. 132–140.
KDDKDD-2011-ZhangCWY #behaviour #comprehension #modelling #predict
User-click modeling for understanding and predicting search-behavior (YZ, WC, DW, QY), pp. 1388–1396.
HTHT-2010-MeissGRFM #navigation #topic #web
Agents, bookmarks and clicks: a topical model of web navigation (MM, BG, JJR, AF, FM), pp. 229–234.
HTHT-2010-MitzlaffBSH #analysis #network
Visit me, click me, be my friend: an analysis of evidence networks of user relationships in BibSonomy (FM, DB, GS, AH), pp. 265–270.
CIKMCIKM-2010-PuneraM #behaviour #information management #modelling #web
The anatomy of a click: modeling user behavior on web information systems (KP, SM), pp. 989–998.
CIKMCIKM-2010-SushmitaJLV #behaviour #interface
Factors affecting click-through behavior in aggregated search interfaces (SS, HJ, ML, RV), pp. 519–528.
CIKMCIKM-2010-WangCWZH #modelling #ranking
Explore click models for search ranking (DW, WC, GW, YZ, BH), pp. 1417–1420.
CIKMCIKM-2010-ZhangWWCZHZ #learning #modelling
Learning click models via probit bayesian inference (YZ, DW, GW, WC, ZZ, BH, LZ), pp. 439–448.
ICMLICML-2010-GraepelCBH #predict
Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine (TG, JQC, TB, RH), pp. 13–20.
RecSysRecSys-2010-ZhengWZLY #case study #empirical #recommendation
Do clicks measure recommendation relevancy?: an empirical user study (HZ, DW, QZ, HL, TY), pp. 249–252.
SIGIRSIGIR-2010-BillerbeckDFIK #retrieval
Exploiting click-through data for entity retrieval (BB, GD, CSF, TI, RK), pp. 803–804.
SIGIRSIGIR-2010-DaveV #learning
Learning the click-through rate for rare/new ads from similar ads (KSD, VV), pp. 897–898.
SIGIRSIGIR-2010-HillardL #documentation #retrieval
Clicked phrase document expansion for sponsored search ad retrieval (DH, CL), pp. 799–800.
SIGIRSIGIR-2010-HofmannHBR #evaluation #retrieval
Comparing click-through data to purchase decisions for retrieval evaluation (KH, BH, MB, MdR), pp. 761–762.
SIGIRSIGIR-2010-XuMC
Temporal click model for sponsored search (WX, EM, ECP), pp. 106–113.
SIGIRSIGIR-2010-YueGCZJ #evaluation #learning #retrieval #statistics
Learning more powerful test statistics for click-based retrieval evaluation (YY, YG, OC, YZ, TJ), pp. 507–514.
SIGIRSIGIR-2010-ZhongWWCZCW #behaviour
Incorporating post-click behaviors into a click model (FZ, DW, GW, WC, YZ, ZC, HW), pp. 355–362.
CIKMCIKM-2009-AnastasakosHKR #approach #collaboration #graph #recommendation #using
A collaborative filtering approach to ad recommendation using the query-ad click graph (TA, DH, SK, HR), pp. 1927–1930.
CIKMCIKM-2009-BeckerBGJP #web #what
What happens after an ad click?: quantifying the impact of landing pages in web advertising (HB, AZB, EG, VJ, BP), pp. 57–66.
CIKMCIKM-2009-CenLZZRM
Exploring relevance for clicks (RC, YL, MZ, BZ, LR, SM), pp. 1847–1850.
CIKMCIKM-2009-KimPDG #classification #graph #web
Improving web page classification by label-propagation over click graphs (SMK, PP, LD, SG), pp. 1077–1086.
ECIRECIR-2009-BidokiT #documentation
Combination of Documents Features Based on Simulated Click-through Data (AMZB, JAT), pp. 538–545.
KDDKDD-2009-XuYL #mining #using
Named entity mining from click-through data using weakly supervised latent dirichlet allocation (GX, SHY, HL), pp. 1365–1374.
SIGIRSIGIR-2009-ChangDLZ #ranking #topic
Enhancing topical ranking with preferences from click-through data (YC, AD, CL, ZZ), pp. 666–667.
SIGIRSIGIR-2009-DengKL #graph #modelling #query #representation
Entropy-biased models for query representation on the click graph (HD, IK, MRL), pp. 339–346.
SIGIRSIGIR-2009-JiZLZXCSZ #ranking
Global ranking by exploiting user clicks (SJ, KZ, CL, ZZ, GRX, OC, GS, HZ), pp. 35–42.
SIGIRSIGIR-2009-KonigGW #predict #query
Click-through prediction for news queries (ACK, MG, QW), pp. 347–354.
SIGIRSIGIR-2009-MacdonaldW
Usefulness of click-through data in expert search (CM, RWW), pp. 816–817.
DACDAC-2008-SauerGL #framework #functional #modelling #named #performance #using
SystemClick: a domain-specific framework for early exploration using functional performance models (CS, MG, HPL), pp. 480–485.
VLDBVLDB-2008-AntonellisGC #analysis #graph #query
Simrank++: query rewriting through link analysis of the click graph (IA, HGM, CCC), pp. 408–421.
CIKMCIKM-2008-DouSYW #learning #question #ranking #web
Are click-through data adequate for learning web search rankings? (ZD, RS, XY, JRW), pp. 73–82.
CIKMCIKM-2008-PobleteCG #graph
Dr. Searcher and Mr. Browser: a unified hyperlink-click graph (BP, CC, AG), pp. 1123–1132.
ECIRECIR-2008-ScholerSBT #using
Using Clicks as Implicit Judgments: Expectations Versus Observations (FS, MS, BB, AT), pp. 28–39.
KDDKDD-2008-CaoJPHLCL #mining #query
Context-aware query suggestion by mining click-through and session data (HC, DJ, JP, QH, ZL, EC, HL), pp. 875–883.
SIGIRSIGIR-2008-DupretP #predict
A user browsing model to predict search engine click data from past observations (GD, BP), pp. 331–338.
SIGIRSIGIR-2008-LiWA #graph #learning #query
Learning query intent from regularized click graphs (XL, YYW, AA), pp. 339–346.
SIGIRSIGIR-2008-WuTZ #community
Aggregated click-through data in a homogeneous user community (MW, AT, JZ), pp. 731–732.
CHICHI-2007-ObendorfWHM #web
Web page revisitation revisited: implications of a long-term click-stream study of browser usage (HO, HW, EH, MM), pp. 597–606.
HCIHCI-IDU-2007-FujiokaTKO #coordination #detection #problem #usability
Tool for Detecting Webpage Usability Problems from Mouse Click Coordinate Logs (RF, RT, YK, HO), pp. 438–445.
HCIOCSC-2007-Shen #interface #multi #social
From Clicks to Touches: Enabling Face-to-Face Shared Social Interface on Multi-touch Tabletops (CS), pp. 169–175.
CIKMCIKM-2007-PiwowarskiZ #modelling #predict
Predictive user click models based on click-through history (BP, HZ), pp. 175–182.
SIGIRSIGIR-2007-CraswellS #graph #random
Random walks on the click graph (NC, MS), pp. 239–246.
KDDKDD-2006-ZhaoLBM #detection #evolution
Event detection from evolution of click-through data (QZ, TYL, SSB, WYM), pp. 484–493.
CHICHI-2005-KaurH #behaviour #comparison #predict
A comparison of LSA, wordNet and PMI-IR for predicting user click behavior (IK, AJH), pp. 51–60.
KDDKDD-2005-ZakiPAS #algorithm #category theory #clustering #dataset #effectiveness #mining #named
CLICKS: an effective algorithm for mining subspace clusters in categorical datasets (MJZ, MP, IA, TS), pp. 736–742.
CIKMCIKM-2004-XueZCYMXF #optimisation #using #web
Optimizing web search using web click-through data (GRX, HJZ, ZC, YY, WYM, WX, WF), pp. 118–126.
ECIRECIR-2003-HeeschR #feedback #image #question #retrieval #what
Relevance Feedback for Content-Based Image Retrieval: What Can Three Mouse Clicks Achieve? (DH, SMR), pp. 363–376.
KDDKDD-2003-GunduzO #behaviour #modelling #predict #representation #web
A Web page prediction model based on click-stream tree representation of user behavior (SG, MTÖ), pp. 535–540.
CHICHI-1999-ByrneADM #eye tracking #visual notation
Eye Tracking the Visual Search of Click-Down Menus (MDB, JRA, SD, MM), pp. 402–409.
SOSPSOSP-1999-MorrisKJK #composition
The Click modular router (RM, EK, JJ, MFK), pp. 217–231.
ICPRICPR-1998-ReesASCSBB #interactive #named
CLICK-IT: interactive television highlighter for sports action replay (DR, JIA, NS, FC, SS, MdB, AB), pp. 1484–1487.
HCIHCI-CC-1997-MamiyaHSK
A New Way to Overcome the Uneasy Operation of Touch-Sensitive Displays by Incorporating “Click” Mechanism CC Switch (MM, HH, YS, MK), pp. 619–622.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.