7 papers:
- ICML-2015-FlaxmanWNNS #performance #process
- Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods (SF, AGW, DN, HN, AJS), pp. 607–616.
- ICML-2015-MartensG #approximate #network #optimisation
- Optimizing Neural Networks with Kronecker-factored Approximate Curvature (JM, RBG), pp. 2408–2417.
- AdaEurope-2014-BurgstallerB #ada #algebra #source code #static analysis
- Kronecker Algebra for Static Analysis of Ada Programs with Protected Objects (BB, JB), pp. 27–42.
- KDD-2013-MorenoNK #graph #learning #modelling
- Learning mixed kronecker product graph models with simulated method of moments (SM, JN, SK), pp. 1052–1060.
- ICML-2007-LeskovecF #graph #modelling #multi #scalability #using
- Scalable modeling of real graphs using Kronecker multiplication (JL, CF), pp. 497–504.
- TACAS-2000-AlfaroKNPS #model checking #probability #process #representation #using
- Symbolic Model Checking of Probabilistic Processes Using MTBDDs and the Kronecker Representation (LdA, MZK, GN, DP, RS), pp. 395–410.
- DAC-1994-DrechslerSTBP #diagrams #functional #order #performance #representation
- Efficient Representation and Manipulation of Switching Functions Based on Ordered Kronecker Functional Decision Diagrams (RD, AS, MT, BB, MAP), pp. 415–419.