BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
arithmet (17)
quantifi (5)
formula (5)
system (5)
use (5)

Stem presburg$ (all stems)

30 papers:

FoSSaCSFoSSaCS-2015-HabermehlK #on the #quantifier
On Presburger Arithmetic Extended with Modulo Counting Quantifiers (PH, DK), pp. 375–389.
FMFM-2014-LakshmiAK #analysis #liveness #reachability #using
Checking Liveness Properties of Presburger Counter Systems Using Reachability Analysis (KVL, AA, RK), pp. 335–350.
LICSLICS-CSL-2014-Haase #subclass
Subclasses of presburger arithmetic and the weak EXP hierarchy (CH), p. 10.
ICALPICALP-v2-2013-Woods #generative
Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials (KW), pp. 410–421.
LICSLICS-2013-Leroux
Presburger Vector Addition Systems (JL), pp. 23–32.
VMCAIVMCAI-2011-BrilloutKRW #quantifier
Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic (AB, DK, PR, TW), pp. 88–102.
IJCARIJCAR-2010-BrilloutKRW #calculus #quantifier
An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic (AB, DK, PR, TW), pp. 384–399.
TACASTACAS-2009-LerouxP #named
TaPAS: The Talence Presburger Arithmetic Suite (JL, GP), pp. 182–185.
LICSLICS-2009-Leroux #induction #invariant #problem #reachability
The General Vector Addition System Reachability Problem by Presburger Inductive Invariants (JL), pp. 4–13.
CADECADE-2007-KuncakR #algebra #performance #satisfiability #towards
Towards Efficient Satisfiability Checking for Boolean Algebra with Presburger Arithmetic (VK, MCR), pp. 215–230.
IJCARIJCAR-2006-DemriL #logic
Presburger Modal Logic Is PSPACE-Complete (SD, DL), pp. 541–556.
ASEASE-2005-ZhangC #performance #query
Efficient temporal-logic query checking for presburger systems (DZ, RC), pp. 24–33.
CADECADE-2005-KuncakNR #algebra #algorithm
An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic (VK, HHN, MCR), pp. 260–277.
LICSLICS-2005-Leroux #diagrams #polynomial #synthesis
A Polynomial Time Presburger Criterion and Synthesis for Number Decision Diagrams (JL), pp. 147–156.
CCCC-2004-ParkerC #algorithm
An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas (EP, SC), pp. 104–119.
CAVCAV-2004-KroeningOSS #satisfiability
Abstraction-Based Satisfiability Solving of Presburger Arithmetic (DK, JO, SAS, OS), pp. 308–320.
LICSLICS-2004-Klaedtke #automaton #on the
On the Automata Size for Presburger Arithmetic (FK), pp. 110–119.
LICSLICS-2004-SeshiaB #bound #quantifier #using
Deciding Quantifier-Free Presburger Formulas Using Parameterized Solution Bounds (SAS, REB), pp. 100–109.
CIAACIAA-2001-BoigelotL #equation
Counting the Solutions of Presburger Equations without Enumerating Them (BB, LL), pp. 40–51.
DACDAC-1998-AmonBL #using
Making Complex Timing Relationships Readable: Presburger Formula Simplicication Using Don’t Cares (TA, GB, JL), pp. 586–590.
CAVCAV-1998-ComonJ #analysis #automaton #multi #safety
Multiple Counters Automata, Safety Analysis and Presburger Arithmetic (HC, YJ), pp. 268–279.
CAVCAV-1998-ShipleKR #comparison #reachability
A Comparison of Presburger Engines for EFSM Reachability (TRS, JHK, RKR), pp. 280–292.
DACDAC-1997-AmonBHL #diagrams #using #verification
Symbolic Timing Verification of Timing Diagrams using Presburger Formulas (TA, GB, TH, JL), pp. 226–231.
CAVCAV-1997-BultanGP #infinity #model checking #using
Symbolic Model Checking of Infinite State Systems Using Presburger Arithmetic (TB, RG, WP), pp. 400–411.
SASSAS-1995-WolperB #approach #constraints
An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) (PW, BB), pp. 21–32.
PLDIPLDI-1994-Pugh #how #why
Counting Solutions to Presburger Formulas: How and Why (WP), pp. 121–134.
PPDPPLILP-1990-Fribourg #execution #prolog
A New Presburger Arithmetic Decision Procedure Based on Extended Prolog Execution (LF), pp. 174–188.
CSLCSL-1990-CantoneCS #problem #set
Decision Problems for Tarski and Presburger Arithmetics Extended With Sets (DC, VC, JTS), pp. 95–109.
STOCSTOC-1978-ReddyL #bound #quantifier
Presburger Arithmetic with Bounded Quantifier Alternation (CRR, DWL), pp. 320–325.
STOCSTOC-1973-Oppen #bound
Elementary Bounds for Presburger Arithmetic (DCO), pp. 34–37.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.