18 papers:
- HT-2015-JangHL #process
- No Reciprocity in “Liking” Photos: Analyzing Like Activities in Instagram (JYJ, KH, DL), pp. 273–282.
- KDD-2015-JiangZT #capacity #constraints #network #social
- Reciprocity in Social Networks with Capacity Constraints (BJ, ZLZ, DT), pp. 457–466.
- CHI-2014-BreretonRSH #design #research
- Beyond ethnography: engagement and reciprocity as foundations for design research out here (MB, PR, RS, ALH), pp. 1183–1186.
- ICPR-2014-BeraM #multi #realtime #using
- Realtime Multilevel Crowd Tracking Using Reciprocal Velocity Obstacles (AB, DM), pp. 4164–4169.
- DAC-2013-AvinashBEPP #energy #fault #hardware
- Improving energy gains of inexact DSP hardware through reciprocative error compensation (LA, AB, CCE, KVP, CP), p. 8.
- CSCW-2013-LampinenLCS #online
- Indebtedness, reciprocity, and fairness in local online exchange (AL, VL, CC, ES), pp. 661–672.
- ECIR-2013-LeelanupabZJ #question #rank
- Is Intent-Aware Expected Reciprocal Rank Sufficient to Evaluate Diversity? (TL, GZ, JMJ), pp. 738–742.
- RecSys-2013-AlanaziB #markov #modelling #recommendation #using
- A people-to-people content-based reciprocal recommender using hidden markov models (AA, MB), pp. 303–306.
- RecSys-2013-ShiKBLH #multi #named #optimisation #rank
- xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance (YS, AK, LB, ML, AH), pp. 431–434.
- CIKM-2012-LiL #framework #named #recommendation
- MEET: a generalized framework for reciprocal recommender systems (LL, TL), pp. 35–44.
- RecSys-2012-ShiKBLOH #collaboration #learning #named #rank
- CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering (YS, AK, LB, ML, NO, AH), pp. 139–146.
- SIGIR-2012-LogachevS #optimisation #parametricity #rank
- Optimizing parameters of the expected reciprocal rank (YL, PS), pp. 1123–1124.
- CIKM-2011-HopcroftLT #predict
- Who will follow you back?: reciprocal relationship prediction (JEH, TL, JT), pp. 1137–1146.
- RecSys-2010-PizzatoRCKK #named #online #recommendation
- RECON: a reciprocal recommender for online dating (LASP, TR, TC, IK, JK), pp. 207–214.
- RecSys-2010-PizzatoRCKYK #online #recommendation
- Reciprocal recommender system for online dating (LASP, TR, TC, IK, KY, JK), pp. 353–354.
- CIKM-2009-ChapelleMZG #rank
- Expected reciprocal rank for graded relevance (OC, DM, YZ, PG), pp. 621–630.
- SIGIR-2009-CormackCB #learning #rank
- Reciprocal rank fusion outperforms condorcet and individual rank learning methods (GVC, CLAC, SB), pp. 758–759.
- OCSC-2007-PanKL #community #design #game studies #guidelines #online
- Sociability Design Guidelines for the Online Gaming Community: Role Play and Reciprocity (YCP, LK, JJL), pp. 426–434.