12 papers:
- TACAS-2015-Nguyen0TP #bound #c #contest #lazy evaluation #source code
- Unbounded Lazy-CSeq: A Lazy Sequentialization Tool for C Programs with Unbounded Context Switches — (Competition Contribution) (TLN, BF, SLT, GP), pp. 461–463.
- TACAS-2015-TomascoI0TP #contest #memory management
- MU-CSeq 0.3: Sequentialization by Read-Implicit and Coarse-Grained Memory Unwindings — (Competition Contribution) (ET, OI, BF, SLT, GP), pp. 436–438.
- TACAS-2014-InversoT0TP #c #contest #lazy evaluation #named
- Lazy-CSeq: A Lazy Sequentialization Tool for C — (Competition Contribution) (OI, ET, BF, SLT, GP), pp. 398–401.
- TACAS-2014-TomascoI0TP #c #contest #memory management #named #source code
- MU-CSeq: Sequentialization of C Programs by Shared Memory Unwindings — (Competition Contribution) (ET, OI, BF, SLT, GP), pp. 402–404.
- ASE-2013-0002IP #c #concurrent #named #preprocessor #tool support #verification
- CSeq: A concurrency pre-processor for sequential C verification tools (BF, OI, GP), pp. 710–713.
- TACAS-2013-0002IP #c #contest #named
- CSeq: A Sequentialization Tool for C — (Competition Contribution) (BF, OI, GP), pp. 616–618.
- PLDI-2011-BurnimENS #correctness #named #nondeterminism #parallel #runtime #specification
- NDSeq: runtime checking for nondeterministic sequential specifications of parallel correctness (JB, TE, GCN, KS), pp. 401–414.
- ASPLOS-2011-ZhangLOSJLR #concurrent #debugging #detection #fault #named
- ConSeq: detecting concurrency bugs through sequential errors (WZ, JL, RO, JS, GJ, SL, TWR), pp. 251–264.
- ICST-2010-NguyenWR #graph #named
- GraphSeq: A Graph Matching Tool for the Extraction of Mobility Patterns (MDN, HW, NR), pp. 195–204.
- ESEC-FSE-2009-ThummalapentaXTHS #generative #mining #named #object-oriented #source code #testing
- MSeqGen: object-oriented unit-test generation via mining source code (ST, TX, NT, JdH, WS), pp. 193–202.
- SIGMOD-2004-MengJCW #framework #named #query
- XSeq: An Index Infrastructure for Tree Pattern Queries (XM, YJ, YC, HW), pp. 941–942.
- POPL-2004-JohannV #theorem
- Free theorems in the presence of seq (PJ, JV), pp. 99–110.