Travelled to:
1 × Australia
1 × Austria
1 × China
1 × Cyprus
1 × Germany
1 × Korea
1 × Spain
16 × USA
2 × France
3 × Canada
Collaborated with:
T.Lappas N.Koudas V.J.Tsotras G.Kollios G.Das M.Vlachos V.Kalogeraki C.Domeniconi P.Papapetrou G.Valkanas D.Zeinalipour-Yazti B.Arai D.Kotsakos V.Athitsos S.Subramaniam S.Guha D.Zhang M.R.Vieira H.Mannila E.J.Keogh A.Kotsifakos J.Hollmén T.Palpanas D.Srivastava S.Lin P.Sakkos E.Terzi N.Sarkas D.Tsirogiannis C.Meek Z.Vagena M.Hadjieleftheriou P.B.Chou E.Grossman P.Kamesam R.Agrawal J.Gehrke P.Raghavan R.Khardon H.Toivonen V.Hristidis M.Platakis M.Potamias D.Papadopoulos V.B.Zordan M.Cardle A.Markowetz B.Seeger D.Kotzias N.Kanhabua K.Nørvåg D.Agarwal D.Barman N.E.Young F.Korn
Talks about:
queri (8) effici (6) data (6) dimension (5) rang (5) approxim (4) search (4) bursti (4) aggreg (4) approach (3)
Person: Dimitrios Gunopulos
DBLP: Gunopulos:Dimitrios
Facilitated 1 volumes:
Contributed to:
Wrote 37 papers:
- SIGIR-2014-KotsakosLKGKN #approach #documentation
- A burstiness-aware approach for document dating (DK, TL, DK, DG, NK, KN), pp. 1003–1006.
- CIKM-2013-ValkanasG #how #web
- How the live web feels about events (GV, DG), pp. 639–648.
- SIGMOD-2013-LappasVGT #mining #named #process
- STEM: a spatio-temporal miner for bursty activity (TL, MRV, DG, VJT), pp. 1021–1024.
- VLDB-2013-KotsakosSKG #health #monitoring #named #smarttech #using
- SmartMonitor: Using Smart Devices to Perform Structural Health Monitoring (DK, PS, VK, DG), pp. 1282–1285.
- KDD-2012-LappasVG #invariant #mining #performance
- Efficient and domain-invariant competitor mining (TL, GV, DG), pp. 408–416.
- VLDB-2012-KotsifakosPHGAK #named #sequence
- Hum-a-song: A Subsequence Matching with Gaps-Range-Tolerances Query-By-Humming System (AK, PP, JH, DG, VA, GK), pp. 1930–1933.
- VLDB-2012-LappasVGT #on the
- On The Spatiotemporal Burstiness of Terms (TL, MRV, DG, VJT), pp. 836–847.
- VLDB-2011-KotsifakosPHG #framework #sequence
- A Subsequence Matching with Gaps-Range-Tolerances Framework: A Query-By-Humming Application (AK, PP, JH, DG), pp. 761–771.
- KDD-2010-LappasTGM #network #social
- Finding effectors in social networks (TL, ET, DG, HM), pp. 1059–1068.
- RecSys-2010-LappasG #interactive #network #recommendation #social
- Interactive recommendations in social endorsement networks (TL, DG), pp. 127–134.
- VLDB-2010-AraiDGHK #approach #cost analysis #multi #retrieval
- An Access Cost-Aware Approach for Object Retrieval over Multiple Sources (BA, GD, DG, VH, NK), pp. 1125–1136.
- KDD-2009-LappasAPKG #documentation #on the #sequence
- On burstiness-aware search for document sequences (TL, BA, MP, DK, DG), pp. 477–486.
- VLDB-2009-PapapetrouAKG #database #scalability #sequence
- Reference-Based Alignment in Large Sequence Databases (PP, VA, GK, DG), pp. 205–216.
- SIGMOD-2008-AthitsosPPKG #approximate #sequence
- Approximate embedding-based subsequence matching of time series (VA, PP, MP, GK, DG), pp. 365–378.
- KDD-2007-AgarwalBGYKS #effectiveness #performance #summary
- Efficient and effective explanation of change in hierarchical summaries (DA, DB, DG, NEY, FK, DS), pp. 6–15.
- VLDB-2007-AraiDGK #algorithm #metric
- Anytime Measures for Top-k Algorithms (BA, GD, DG, NK), pp. 914–925.
- VLDB-2007-DasGKS #ad hoc #data type #query
- Ad-hoc Top-k Query Answering for Data Streams (GD, DG, NK, NS), pp. 183–194.
- CIKM-2006-Zeinalipour-YaztiLG #distributed #similarity
- Distributed spatio-temporal similarity search (DZY, SL, DG), pp. 14–23.
- ICEIS-ISAS-2006-SubramaniamKG #behaviour #evolution #predict #process
- Business Processes: Behavior Prediction and Capturing Reasons for Evolution (SS, VK, DG), pp. 3–10.
- VLDB-2006-DasGKT #query #using
- Answering Top-k Queries Using Views (GD, DG, NK, DT), pp. 451–462.
- VLDB-2006-SubramaniamPPKG #detection #modelling #online #parametricity #using
- Online Outlier Detection in Sensor Data Using Non-Parametric Models (SS, TP, DP, VK, DG), pp. 187–198.
- KDD-2004-VlachosGD #distance #invariant #metric
- Rotation invariant distance measures for trajectories (MV, DG, GD), pp. 707–712.
- SIGMOD-2004-VlachosMV #identification #online #query
- Identifying Similarities, Periodicities and Bursts for Online Search Queries (MV, CM, ZV, DG), pp. 131–142.
- VLDB-2004-PalpanasCGKZ #database #scalability
- Indexing Large Human-Motion Databases (EJK, TP, VBZ, DG, MC), pp. 780–791.
- KDD-2003-GuhaGK #correlation #data type
- Correlating synchronous and asynchronous data streams (SG, DG, NK), pp. 529–534.
- KDD-2003-VlachosHGK #distance #metric #multi
- Indexing multi-dimensional time-series with support for multiple distance measures (MV, MH, DG, EJK), pp. 216–225.
- VLDB-2003-KoudasGGSV #approximate #constraints #optimisation #parametricity #performance #query
- Efficient Approximation Of Optimization Queries Under Parametric Aggregation Constraints (SG, DG, NK, DS, MV), pp. 778–789.
- CIKM-2002-KalogerakiGZ #network #peer-to-peer
- A local search mechanism for peer-to-peer networks (VK, DG, DZY), pp. 300–307.
- KDD-2002-VlachosDGKK #classification #reduction #visualisation
- Non-linear dimensionality reduction techniques for classification and visualization (MV, CD, DG, GK, NK), pp. 645–651.
- PODS-2002-ZhangTG #performance
- Efficient Aggregation over Objects with Extent (DZ, VJT, DG), pp. 121–132.
- ICML-2001-DomeniconiG #approach #approximate #classification #dataset #multi #nearest neighbour #performance #query #scalability
- An Efficient Approach for Approximating Multi-dimensional Range Queries and Nearest Neighbor Classification in Large Datasets (CD, DG), pp. 98–105.
- PODS-2001-ZhangMTGS #performance
- Efficient Computation of Temporal Aggregates with Range Predicates (DZ, AM, VJT, DG, BS).
- KDD-2000-ChouGGK #identification
- Identifying prospective customers (PBC, EG, DG, PK), pp. 447–456.
- SIGMOD-2000-GunopulosKTD #approximate #multi #query
- Approximating Multi-Dimensional Aggregate Range Queries over Real Attributes (DG, GK, VJT, CD), pp. 463–474.
- PODS-1999-KolliosGT #mobile #on the
- On Indexing Mobile Objects (GK, DG, VJT), pp. 261–272.
- SIGMOD-1998-AgrawalGGR #automation #clustering #data mining #mining
- Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications (RA, JG, DG, PR), pp. 94–105.
- PODS-1997-GunopulosKMT #data mining #machine learning #mining
- Data mining, Hypergraph Transversals, and Machine Learning (DG, RK, HM, HT), pp. 209–216.