BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
recommendation
Google recommendation

Tag #recommendation

1554 papers:

EDMEDM-2019-AiCGZWFW #concept #learning #online
Concept-Aware Deep Knowledge Tracing and Exercise Recommendation in an Online Learning System (FA, YC, YG, YZ, ZW, GF, GW).
EDMEDM-2019-JacobsenS #exclamation #student
It's a Match! Reciprocal Recommender System for Graduating Students and Jobs (AJ, GS).
EDMEDM-2019-KraussMA #learning #modelling
Smart Learning Object Recommendations based on Time-Dependent Learning Need Models (CK, AM, SA).
EDMEDM-2019-Ma #design
Design of an Elective Course Recommendation System for University Environment (BM).
EDMEDM-2019-MorsommeA #education
Content-based Course Recommender System for Liberal Arts Education (RM, SVA).
EDMEDM-2019-PolyzouNK #framework #markov
Scholars Walk: A Markov Chain Framework for Course Recommendation (AP, ANN, GK).
ICPCICPC-2019-0002KJCZ #contract
Recommending differentiated code to support smart contract update (YH0, QK, NJ, XC, ZZ), pp. 260–270.
ICPCICPC-2019-SilvaR0SPM #mining #programming
Recommending comprehensive solutions for programming tasks by mining crowd knowledge (RFGdS, CKR, MMR0, KAS, KVRP, MdAM), pp. 358–368.
ICSMEICSME-2019-AnuCSH0Q #approach
An Approach to Recommendation of Verbosity Log Levels Based on Logging Intention (HA, JC, WS, JH, BL0, BQ), pp. 125–134.
ICSMEICSME-2019-GalsterTB #architecture #maintenance
Supporting Software Architecture Maintenance by Providing Task-Specific Recommendations (MG, CT, KB), pp. 370–372.
ICSMEICSME-2019-NguyenVN #personalisation
Personalized Code Recommendation (TN, PV, TN), pp. 313–317.
ICSMEICSME-2019-NguyenVN19a #exception
Recommending Exception Handling Code (TN, PV, TN), pp. 390–393.
MSRMSR-2019-OliveiraOCF0 #energy #java
Recommending energy-efficient Java collections (WO, RO, FC, BF, GP0), pp. 160–170.
SANERSANER-2019-KirinukiTN #named #testing #using #web
COLOR: Correct Locator Recommender for Broken Test Scripts using Various Clues in Web Application (HK, HT, KN), pp. 310–320.
SANERSANER-2019-PachecoBMNMR #framework #mining #scala
Mining Scala Framework Extensions for Recommendation Patterns (YP, JDB, TM, DDN, WDM, CDR), pp. 514–523.
AIIDEAIIDE-2019-MachadoGWNNT #design #evaluation #game studies
Evaluation of a Recommender System for Assisting Novice Game Designers (TM, DG, AW, ON, AN, JT), pp. 167–173.
CHI-PLAYCHI-PLAY-2019-HonauerMH #design #game studies #interactive
Interactive Soft Toys for Infants and Toddlers - Design Recommendations for Age-appropriate Play (MH, PM, EH), pp. 265–276.
CoGCoG-2019-MachadoGNT #design #game studies
Pitako - Recommending Game Design Elements in Cicero (TM, DG, AN, JT), pp. 1–8.
FDGFDG-2019-PirkerPK #game studies #interactive #social
Social interactions in game jams: a jammer recommender tool (JP, AP, JK), p. 4.
CIKMCIKM-2019-0001SKJ #named
Rehab-Path: Recommending Alcohol and Drug-free Routes (YZ0, PS, YK, AJ), pp. 2929–2932.
CIKMCIKM-2019-AnelliN
2nd Workshop on Knowledge-aware and Conversational Recommender Systems - KaRS (VWA, TDN), pp. 3001–3002.
CIKMCIKM-2019-ChelliahZS #mining #multi #overview
Recommendation for Multi-stakeholders and through Neural Review Mining (MC, YZ, SS), pp. 2979–2981.
CIKMCIKM-2019-ChenAJC #bias
Correcting for Recency Bias in Job Recommendation (RCC, QA, GJ, WBC), pp. 2185–2188.
CIKMCIKM-2019-ChenCCR #network
A Dynamic Co-attention Network for Session-based Recommendation (WC, FC, HC, MdR), pp. 1461–1470.
CIKMCIKM-2019-ChenL
Data Poisoning Attacks on Cross-domain Recommendation (HC, JL), pp. 2177–2180.
CIKMCIKM-2019-Cohen-ShapiraRS #dataset #named #representation #visual notation
AutoGRD: Model Recommendation Through Graphical Dataset Representation (NCS, LR, BS, GK, RV), pp. 821–830.
CIKMCIKM-2019-GaoHWWWPC #named
STAR: Spatio-Temporal Taxonomy-Aware Tag Recommendation for Citizen Complaints (JG, YH, YW, XW, JW, GP, XC), pp. 1903–1912.
CIKMCIKM-2019-HeWNC #self
A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists (YH, JW, WN, JC), pp. 1481–1490.
CIKMCIKM-2019-HuangLZYCGH #education #multi #online
Exploring Multi-Objective Exercise Recommendations in Online Education Systems (ZH, QL0, CZ, YY, EC, WG, GH), pp. 1261–1270.
CIKMCIKM-2019-JinCCHV #interactive #music #named
MusicBot: Evaluating Critiquing-Based Music Recommenders with Conversational Interaction (YJ, WC, LC, NNH, KV), pp. 951–960.
CIKMCIKM-2019-KangHLY #learning
Semi-Supervised Learning for Cross-Domain Recommendation to Cold-Start Users (SK, JH, DL, HY), pp. 1563–1572.
CIKMCIKM-2019-KangM #generative #scalability
Candidate Generation with Binary Codes for Large-Scale Top-N Recommendation (WCK, JJM), pp. 1523–1532.
CIKMCIKM-2019-KangPKCC #modelling #topic #using
Recommender System Using Sequential and Global Preference via Attention Mechanism and Topic Modeling (KK, JP, WK, HC, JC), pp. 1543–1552.
CIKMCIKM-2019-KrishnanCTS #approach #composition #social
A Modular Adversarial Approach to Social Recommendation (AK, HC, TC0, HS), pp. 1753–1762.
CIKMCIKM-2019-LaiSYHLY #multi
Social-Aware VR Configuration Recommendation via Multi-Feedback Coupled Tensor Factorization (HCL, HHS, DNY, JLH, WCL, PSY), pp. 1773–1782.
CIKMCIKM-2019-LiGLCYN #graph #hashtag #network
Long-tail Hashtag Recommendation for Micro-videos with Graph Convolutional Network (ML, TG, ML, ZC, JY, LN), pp. 509–518.
CIKMCIKM-2019-LiJC0W #approach #hybrid #named
HAES: A New Hybrid Approach for Movie Recommendation with Elastic Serendipity (XL, WJ, WC, JW0, GW0), pp. 1503–1512.
CIKMCIKM-2019-LiLWXZHKCLL #multi #network
Multi-Interest Network with Dynamic Routing for Recommendation at Tmall (CL, ZL, MW, YX, HZ, PH, GK, QC, WL, DLL), pp. 2615–2623.
CIKMCIKM-2019-LiuWJYZZ #named
In2Rec: Influence-based Interpretable Recommendation (HL, JW, LJ, JY, XZ0, MZ), pp. 1803–1812.
CIKMCIKM-2019-LvJYSLYN #named #online #scalability
SDM: Sequential Deep Matching Model for Online Large-scale Recommender System (FL, TJ, CY, FS, QL, KY, WN), pp. 2635–2643.
CIKMCIKM-2019-MaWZLLCYT0 #named
DBRec: Dual-Bridging Recommendation via Discovering Latent Groups (JM, JW, MZ, LL, CL, WC, YY, HT, XL0), pp. 1513–1522.
CIKMCIKM-2019-QiuLHY #graph #network #order
Rethinking the Item Order in Session-based Recommendation with Graph Neural Networks (RQ, JL, ZH, HY), pp. 579–588.
CIKMCIKM-2019-RaoSPJCTGK #evolution #learning
Learning to be Relevant: Evolution of a Course Recommendation System (SR, KS, GP, MJ, SC, VT, JG, DK), pp. 2625–2633.
CIKMCIKM-2019-ShiZYZHLM #adaptation
Adaptive Feature Sampling for Recommendation with Missing Content Feature Values (SS, MZ0, XY, YZ, BH, YL, SM), pp. 1451–1460.
CIKMCIKM-2019-SivrikayaAL #parametricity
International Workshop on Model Selection and Parameter Tuning in Recommender Systems (FS, SA, DL), pp. 2999–3000.
CIKMCIKM-2019-SongCZX #memory management #network
Session-based Recommendation with Hierarchical Memory Networks (BS, YC, WZ, CX), pp. 2181–2184.
CIKMCIKM-2019-SunLWPLOJ #bidirectional #named
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer (FS, JL, JW, CP, XL, WO, PJ), pp. 1441–1450.
CIKMCIKM-2019-Wang0C #graph #learning #reasoning
Learning and Reasoning on Graph for Recommendation (XW, XH0, TSC), pp. 2971–2972.
CIKMCIKM-2019-WangLZHG #e-commerce #interactive #named #network
QPIN: A Quantum-inspired Preference Interactive Network for E-commerce Recommendation (PW, ZL, YZ, YH, LG), pp. 2329–2332.
CIKMCIKM-2019-WuLZQ #learning
Long- and Short-term Preference Learning for Next POI Recommendation (YW, KL, GZ, XQ), pp. 2301–2304.
CIKMCIKM-2019-WuWZJ #effectiveness #learning #performance
Learning to Effectively Estimate the Travel Time for Fastest Route Recommendation (NW, JW, WXZ, YJ), pp. 1923–1932.
CIKMCIKM-2019-XiaWDZCC
Leveraging Ratings and Reviews with Gating Mechanism for Recommendation (HX, ZW, BD, LZ, SC, GC), pp. 1573–1582.
CIKMCIKM-2019-XueJLWZT #on-demand
A Spatio-temporal Recommender System for On-demand Cinemas (TX, BJ, BL, WW0, QZ, ST), pp. 1553–1562.
CIKMCIKM-2019-XuLHLX0 #e-commerce #graph #network #social
Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation (FX, JL, ZH, YL0, YX, XX0), pp. 529–538.
CIKMCIKM-2019-YanCKWM #2d #named #network
CosRec: 2D Convolutional Neural Networks for Sequential Recommendation (AY, SC, WCK, MW, JJM), pp. 2173–2176.
CIKMCIKM-2019-YouVLL #multi #network
Attributed Multi-Relational Attention Network for Fact-checking URL Recommendation (DY, NV, KL, QL), pp. 1471–1480.
CIKMCIKM-2019-ZhangC #visual notation
Instagrammers, Fashionistas, and Me: Recurrent Fashion Recommendation with Implicit Visual Influence (YZ, JC), pp. 1583–1592.
CIKMCIKM-2019-ZhangSTZLAZW0Y #on-demand #platform
Recommendation-based Team Formation for On-demand Taxi-calling Platforms (LZ, TS, YT, ZZ, DL, WA, LZ, GW, YL0, JY), pp. 59–68.
CIKMCIKM-2019-ZhaoLF
Cross-Domain Recommendation via Preference Propagation GraphNet (CZ, CL, CF), pp. 2165–2168.
CIKMCIKM-2019-ZhaoZSL #network
Motif Enhanced Recommendation over Heterogeneous Information Network (HZ, YZ, YS, DLL), pp. 2189–2192.
CIKMCIKM-2019-ZhuC0LZ #framework #named
DTCDR: A Framework for Dual-Target Cross-Domain Recommendation (FZ, CC, YW0, GL, XZ), pp. 1533–1542.
CIKMCIKM-2019-ZhuGLMOZWGC #adaptation #interactive
Query-based Interactive Recommendation by Meta-Path and Adapted Attention-GRU (YZ, YG, QL, YM, WO, JZ, BW, ZG, DC), pp. 2585–2593.
ECIRECIR-p1-2019-AnelliNSRT
Local Popularity and Time in top-N Recommendation (VWA, TDN, EDS, AR, JT), pp. 861–868.
ECIRECIR-p1-2019-BorattoFM #algorithm #bias #online
The Effect of Algorithmic Bias on Recommender Systems for Massive Open Online Courses (LB, GF, MM), pp. 457–472.
ECIRECIR-p1-2019-LandinVPB #modelling #named #probability
PRIN: A Probabilistic Recommender with Item Priors and Neural Models (AL, DV, JP, ÁB), pp. 133–147.
ECIRECIR-p1-2019-ManotumruksaRMO #on the
On Cross-Domain Transfer in Venue Recommendation (JM, DR, CM, IO), pp. 443–456.
ECIRECIR-p1-2019-OscheCB #multi #named
AntRS: Recommending Lists Through a Multi-objective Ant Colony System (PEO, SC, AB), pp. 229–243.
ECIRECIR-p1-2019-Sanz-CruzadoC #information retrieval #modelling #network #social
Information Retrieval Models for Contact Recommendation in Social Networks (JSC, PC), pp. 148–163.
ECIRECIR-p1-2019-WangOM #analysis #comparison #sentiment
Comparison of Sentiment Analysis and User Ratings in Venue Recommendation (XW, IO, CM), pp. 215–228.
ECIRECIR-p2-2019-BeelCKDK #online
Online Evaluations for Everyone: Mr. DLib's Living Lab for Scholarly Recommendations (JB, AC0, OK, LWD, PK), pp. 213–219.
ECIRECIR-p2-2019-KanagawaKSTS #adaptation
Cross-Domain Recommendation via Deep Domain Adaptation (HK, HK, NS, YT, TS), pp. 20–29.
ECIRECIR-p2-2019-Landin #learning
Learning User and Item Representations for Recommender Systems (AL), pp. 337–342.
ECIRECIR-p2-2019-MaityPGBGM #framework #named #stack overflow
DeepTagRec: A Content-cum-User Based Tag Recommendation Framework for Stack Overflow (SKM, AP, SG0, AB, PG, AM0), pp. 125–131.
ECIRECIR-p2-2019-VermaGMC
Heterogeneous Edge Embedding for Friend Recommendation (JV, SG, DM, TC0), pp. 172–179.
ICMLICML-2019-Chen0LJQS #generative #learning
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System (XC, SL0, HL, SJ, YQ, LS), pp. 1052–1061.
ICMLICML-2019-MannGGHJLS #learning
Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems (TAM, SG, AG, HH, RJ, BL, PS), pp. 4324–4332.
ICMLICML-2019-WangZ0Q #learning #random #robust
Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random (XW, RZ0, YS0, JQ0), pp. 6638–6647.
KDDKDD-2019-0009ZGZNQH #framework #graph #named #scalability
IntentGC: A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation (JZ0, ZZ, ZG, WZ0, WN, GQ, XH), pp. 2347–2357.
KDDKDD-2019-AmelkinS #network #social
Fighting Opinion Control in Social Networks via Link Recommendation (VA, AKS), pp. 677–685.
KDDKDD-2019-BeutelCDQWWHZHC #ranking
Fairness in Recommendation Ranking through Pairwise Comparisons (AB, JC, TD, HQ, LW, YW, LH, ZZ, LH, EHC, CG), pp. 2212–2220.
KDDKDD-2019-ChenC0GLLW #modelling #named
λOpt: Learn to Regularize Recommender Models in Finer Levels (YC, BC, XH0, CG, YL0, JGL, YW), pp. 978–986.
KDDKDD-2019-ChenHXGGSLPZZ #generative #named #personalisation
POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion (WC, PH, JX, XG, CG, FS, CL, AP, HZ, BZ), pp. 2662–2670.
KDDKDD-2019-ChenSJ0Z0 #behaviour #effectiveness #performance #reuse #using
Effective and Efficient Reuse of Past Travel Behavior for Route Recommendation (LC, SS, CSJ, BY0, ZZ, LS0), pp. 488–498.
KDDKDD-2019-Ding0LXZSJS #realtime
Infer Implicit Contexts in Real-time Online-to-Offline Recommendation (XD, JT0, TXL, CX, YZ, FS, QJ, DS), pp. 2336–2346.
KDDKDD-2019-DuWYZT #online
Sequential Scenario-Specific Meta Learner for Online Recommendation (ZD, XW, HY, JZ, JT0), pp. 2895–2904.
KDDKDD-2019-FanZHSHML #graph #network
Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation (SF, JZ, XH, CS, LH, BM, YL), pp. 2478–2486.
KDDKDD-2019-GeyikAK #ranking
Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search (SCG, SA, KK), pp. 2221–2231.
KDDKDD-2019-GongZDLGSOZ #clique #optimisation
Exact-K Recommendation via Maximal Clique Optimization (YG, YZ, LD, QL, ZG, FS, WO, KQZ), pp. 617–626.
KDDKDD-2019-GuoGSLZCA #natural language
Deep Natural Language Processing for Search and Recommender Systems (WG, HG, JS, BL, LZ, BCC, DA), pp. 3199–3200.
KDDKDD-2019-GuoYWCZH #streaming
Streaming Session-based Recommendation (LG0, HY, QW, TC, AZ, NQVH), pp. 1569–1577.
KDDKDD-2019-HanNCLHX #approach #generative
A Deep Generative Approach to Search Extrapolation and Recommendation (FXH, DN, HC, KL, YH, YX), pp. 1771–1779.
KDDKDD-2019-LeeIJCC #named
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation (HL, JI, SJ, HC, SC), pp. 1073–1082.
KDDKDD-2019-LiuGZL #realtime
Real-time Attention Based Look-alike Model for Recommender System (YL, KG, XZ, LL), pp. 2765–2773.
KDDKDD-2019-LiuLDCG #learning #named
DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation (DL, JL0, BD, JC, RG), pp. 344–352.
KDDKDD-2019-LiuTZLDX #multi #named #personalisation
Hydra: A Personalized and Context-Aware Multi-Modal Transportation Recommendation System (HL, YT, PZ, XL, JD, HX), pp. 2314–2324.
KDDKDD-2019-MaKL #network
Hierarchical Gating Networks for Sequential Recommendation (CM, PK, XL), pp. 825–833.
KDDKDD-2019-OchiaiSYTF #realtime #smarttech
Real-time On-Device Troubleshooting Recommendation for Smartphones (KO, KS, NY, YT, YF), pp. 2783–2791.
KDDKDD-2019-QinZZXZMZX #named #personalisation #perspective
DuerQuiz: A Personalized Question Recommender System for Intelligent Job Interview (CQ, HZ, CZ, TX, FZ, CM, JZ, HX), pp. 2165–2173.
KDDKDD-2019-ShangYLQMY #learning #re-engineering
Environment Reconstruction with Hidden Confounders for Reinforcement Learning based Recommendation (WS, YY, QL, ZQ, YM, JY), pp. 566–576.
KDDKDD-2019-TangWYS #named
AKUPM: Attention-Enhanced Knowledge-Aware User Preference Model for Recommendation (XT, TW, HY, HS), pp. 1891–1899.
KDDKDD-2019-Wang00LC #graph #named #network
KGAT: Knowledge Graph Attention Network for Recommendation (XW, XH0, YC0, ML0, TSC), pp. 950–958.
KDDKDD-2019-Wang0L #social
Social Recommendation with Optimal Limited Attention (XW0, WZ0, CL), pp. 1518–1527.
KDDKDD-2019-WangWZPL #algorithm #network #personalisation
Empowering A* Search Algorithms with Neural Networks for Personalized Route Recommendation (JW, NW, WXZ, FP, XL), pp. 539–547.
KDDKDD-2019-WangZZLZLW #graph #network
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems (HW, FZ, MZ, JL, MZ, WL, ZW), pp. 968–977.
KDDKDD-2019-WarlopMG #process
Tensorized Determinantal Point Processes for Recommendation (RW, JM, MG), pp. 1605–1615.
KDDKDD-2019-WuGGWC #modelling #predict
Dual Sequential Prediction Models Linking Sequential Recommendation and Information Dissemination (QW, YG, XG, PW, GC), pp. 447–457.
KDDKDD-2019-WuWAHHX #named #personalisation
NPA: Neural News Recommendation with Personalized Attention (CW, FW, MA, JH, YH, XX0), pp. 2576–2584.
KDDKDD-2019-XiaoZPSZ0 #personalisation #similarity #social
Beyond Personalization: Social Content Recommendation for Creator Equality and Consumer Satisfaction (WX, HZ, HP, YS, VWZ, QY0), pp. 235–245.
KDDKDD-2019-YuSJ #interactive #visual notation
A Visual Dialog Augmented Interactive Recommender System (TY, YS, HJ), pp. 157–165.
KDDKDD-2019-ZhouMZ #memory management #network #personalisation #topic
Topic-Enhanced Memory Networks for Personalised Point-of-Interest Recommendation (XZ, CM, ZZ), pp. 3018–3028.
KDDKDD-2019-ZouXDS0Y #learning
Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems (LZ, LX, ZD, JS, WL0, DY), pp. 2810–2818.
OOPSLAOOPSLA-2019-LuanYBS0 #code search #named
Aroma: code recommendation via structural code search (SL, DY, CB, KS, SC0), p. 28.
ASEASE-2019-JiangLJ #how #machine learning
Machine Learning Based Recommendation of Method Names: How Far are We (LJ, HL, HJ), pp. 602–614.
ESEC-FSEESEC-FSE-2019-Abid #api
Recommending related functions from API usage-based function clone structures (SA), pp. 1193–1195.
ESEC-FSEESEC-FSE-2019-CaiWH0X0 #api #named
BIKER: a tool for Bi-information source based API method recommendation (LC, HW, QH, XX0, ZX, DL0), pp. 1075–1079.
ICSE-2019-NguyenRRODP #api #mining #named
FOCUS: a recommender system for mining API function calls and usage patterns (PTN, JDR, DDR, LO, TD, MDP), pp. 1050–1060.
ICSAICSA-2018-BhatSKHBM #design #question
An Expert Recommendation System for Design Decision Making: Who Should be Involved in Making a Design Decision? (MB, KS, KK, UH, AB, FM), pp. 85–94.
JCDLJCDL-2018-KobayashiS0 #distributed #representation #using
Citation Recommendation Using Distributed Representation of Discourse Facets in Scientific Articles (YK, MS, YM0), pp. 243–251.
EDMEDM-2018-EstebanGR #algorithm #approach #hybrid #multi #search-based #student #using
A Hybrid Multi-Criteria approach using a Genetic Algorithm for Recommending Courses to University Students (AE, AZG, CR).
ICPCICPC-2018-PantiuchinaBTP #refactoring #towards
Towards just-in-time refactoring recommenders (JP, GB, MT, DP), pp. 312–315.
ICPCICPC-2018-ParraEH #automation #development #video
Automatic tag recommendation for software development video tutorials (EP, JEA, SH), pp. 222–232.
ICPCICPC-2018-ZhangLXJS #debugging
Recommending frequently encountered bugs (YZ0, DL0, XX0, JJ0, JS), pp. 120–131.
ICSMEICSME-2018-YueGMXWM #automation #refactoring
Automatic Clone Recommendation for Refactoring Based on the Present and the Past (RY, ZG, NM, YX, XW, JDM), pp. 115–126.
MSRMSR-2018-JinS #code completion #comprehension #performance
The hidden cost of code completion: understanding the impact of the recommendation-list length on its efficiency (XJ, FS), pp. 70–73.
SCAMSCAM-2018-PughBM #adaptation #research
[Research Paper] The Case for Adaptive Change Recommendation (SP, DWB, LM), pp. 129–138.
FMFM-2018-NellenRWAK #challenge #empirical #evaluation #modelling #verification
Formal Verification of Automotive Simulink Controller Models: Empirical Technical Challenges, Evaluation and Recommendations (JN, TR, MTBW, , JPK), pp. 382–398.
AIIDEAIIDE-2018-SifaYRB #architecture #bottom-up #comparative #evaluation #game studies #matrix #online
Matrix and Tensor Factorization Based Game Content Recommender Systems: A Bottom-Up Architecture and a Comparative Online Evaluation (RS, RY, RR, CB), pp. 102–108.
CoGCIG-2018-BertensGCP #game studies #video
A Machine-Learning Item Recommendation System for Video Games (PB, AG, PPC, AP), pp. 1–4.
CoGCIG-2018-ChenANCSE #game studies #named #performance
Q-DeckRec: A Fast Deck Recommendation System for Collectible Card Games (ZC, CA, THDN, SC, YS, MSEN), pp. 1–8.
CIKMCIKM-2018-ChenFEZC0 #modelling #social
Modeling Users' Exposure with Social Knowledge Influence and Consumption Influence for Recommendation (JC, YF, ME, SZ, CC0, CW0), pp. 953–962.
CIKMCIKM-2018-ChinZJC #named
ANR: Aspect-based Neural Recommender (JYC, KZ0, SRJ, GC), pp. 147–156.
CIKMCIKM-2018-DaveZHAK #approach #learning #representation
A Combined Representation Learning Approach for Better Job and Skill Recommendation (VSD, BZ, MAH, KA, MK), pp. 1997–2005.
CIKMCIKM-2018-HidasiK #network
Recurrent Neural Networks with Top-k Gains for Session-based Recommendations (BH, AK), pp. 843–852.
CIKMCIKM-2018-HuSZY #network
Local and Global Information Fusion for Top-N Recommendation in Heterogeneous Information Network (BH, CS, WXZ, TY), pp. 1683–1686.
CIKMCIKM-2018-HuZY #collaboration #named #network
CoNet: Collaborative Cross Networks for Cross-Domain Recommendation (GH, YZ, QY), pp. 667–676.
CIKMCIKM-2018-KangWM
Recommendation Through Mixtures of Heterogeneous Item Relationships (WCK, MW, JJM), pp. 1143–1152.
CIKMCIKM-2018-KhattarKV0 #hybrid #named
HRAM: A Hybrid Recurrent Attention Machine for News Recommendation (DK, VK, VV, MG0), pp. 1619–1622.
CIKMCIKM-2018-KhattarKV018a #3d #network #word
Weave&Rec: A Word Embedding based 3-D Convolutional Network for News Recommendation (DK, VK, VV, MG0), pp. 1855–1858.
CIKMCIKM-2018-LinGL #social
Recommender Systems with Characterized Social Regularization (THL, CG, YL0), pp. 1767–1770.
CIKMCIKM-2018-MafrurSK #data analysis #named #visual notation
DiVE: Diversifying View Recommendation for Visual Data Exploration (RM, MAS, HAK), pp. 1123–1132.
CIKMCIKM-2018-MaZWL #self
Point-of-Interest Recommendation: Exploiting Self-Attentive Autoencoders with Neighbor-Aware Influence (CM, YZ, QW, XL), pp. 697–706.
CIKMCIKM-2018-MehrotraMBL0 #evaluation #towards #trade-off
Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems (RM, JM, HB, ML, FD0), pp. 2243–2251.
CIKMCIKM-2018-MeiRCNMN #interactive #network
An Attentive Interaction Network for Context-aware Recommendations (LM, PR, ZC, LN, JM0, JYN), pp. 157–166.
CIKMCIKM-2018-PandeyKS #learning #using
Recommending Serendipitous Items using Transfer Learning (GP0, DK, AS), pp. 1771–1774.
CIKMCIKM-2018-Shi0LM #adaptation
Attention-based Adaptive Model to Unify Warm and Cold Starts Recommendation (SS, MZ0, YL, SM), pp. 127–136.
CIKMCIKM-2018-TranLL0 #matrix
Regularizing Matrix Factorization with User and Item Embeddings for Recommendation (TT, KL, YL, DL0), pp. 687–696.
CIKMCIKM-2018-VainshteinGKSR #approach #automation #hybrid
A Hybrid Approach for Automatic Model Recommendation (RV, AGM, GK, BS, LR), pp. 1623–1626.
CIKMCIKM-2018-Wang0C #modelling #overview
Word-Driven and Context-Aware Review Modeling for Recommendation (QW, SL0, GC), pp. 1859–1862.
CIKMCIKM-2018-WangCZLL
Variational Recurrent Model for Session-based Recommendation (ZW, CC, KZ, YL, WL), pp. 1839–1842.
CIKMCIKM-2018-WangGEGSZBC #internet
Device-Aware Rule Recommendation for the Internet of Things (BW, XG0, ME, ZG, BS, YZ, JB, DC), pp. 2037–2045.
CIKMCIKM-2018-WangZWZLXG #graph #named
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems (HW, FZ, JW, MZ, WL, XX, MG), pp. 417–426.
CIKMCIKM-2018-WanWLBM #representation
Representing and Recommending Shopping Baskets with Complementarity, Compatibility and Loyalty (MW, DW, JL0, PB, JJM), pp. 1133–1142.
CIKMCIKM-2018-WilhelmRBJCG #process
Practical Diversified Recommendations on YouTube with Determinantal Point Processes (MW, AR, AB, SJ, EHC, JG), pp. 2165–2173.
CIKMCIKM-2018-XiaJSZWS #learning #modelling #multi
Modeling Consumer Buying Decision for Recommendation Based on Multi-Task Deep Learning (QX, PJ, FS, YZ, XW, ZS), pp. 1703–1706.
CIKMCIKM-2018-Yu0LYL #adaptation #identification #network #social
Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation (JY, MG0, JL, HY, HL0), pp. 357–366.
CIKMCIKM-2018-ZhangCA0C #towards
Towards Conversational Search and Recommendation: System Ask, User Respond (YZ, XC, QA, LY0, WBC), pp. 177–186.
CIKMCIKM-2018-ZhuHC
Fairness-Aware Tensor-Based Recommendation (ZZ, XH, JC), pp. 1153–1162.
ECIRECIR-2018-0001TJ18a #named
CITEWERTs: A System Combining Cite-Worthiness with Citation Recommendation (MF0, AT, AJ), pp. 815–819.
ECIRECIR-2018-GuptaSP #modelling #music
Explicit Modelling of the Implicit Short Term User Preferences for Music Recommendation (KG, NS, VP), pp. 333–344.
ECIRECIR-2018-JiaS #approach #performance
Local Is Good: A Fast Citation Recommendation Approach (HJ, ES), pp. 758–764.
ECIRECIR-2018-SanchezB #metric
Time-Aware Novelty Metrics for Recommender Systems (PS0, AB), pp. 357–370.
ECIRECIR-2018-SinghM #symmetry #using
Benefits of Using Symmetric Loss in Recommender Systems (GS, SM), pp. 345–356.
ICPRICPR-2018-GarciaLSH #classification #complexity #metric #using
Classifier Recommendation Using Data Complexity Measures (LPFG, ACL, MCPdS, TKH), pp. 874–879.
KDDKDD-2018-0001C #performance #probability
Efficient Attribute Recommendation with Probabilistic Guarantee (CW0, KC), pp. 2387–2396.
KDDKDD-2018-BhagatMLV #modelling
Buy It Again: Modeling Repeat Purchase Recommendations (RB, SM, AL, SV), pp. 62–70.
KDDKDD-2018-CardosoDV #learning #personalisation #semistructured data #towards
Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products (ÂC, FD, SV), pp. 80–89.
KDDKDD-2018-Chen0DTHT #learning #online
Stabilizing Reinforcement Learning in Dynamic Environment with Application to Online Recommendation (SYC, YY0, QD, JT, HKH, HHT), pp. 1187–1196.
KDDKDD-2018-Christakopoulou #approach #interactive #towards
Q&R: A Two-Stage Approach toward Interactive Recommendation (KC, AB, RL, SJ, EHC), pp. 139–148.
KDDKDD-2018-Christakopoulou18a #modelling
Local Latent Space Models for Top-N Recommendation (EC, GK), pp. 1235–1243.
KDDKDD-2018-GargR #exclamation
Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer! (NG, SR), pp. 1425–1434.
KDDKDD-2018-HuSZY
Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model (BH, CS, WXZ, PSY), pp. 1531–1540.
KDDKDD-2018-Kokkodis #online
Dynamic Recommendations for Sequential Hiring Decisions in Online Labor Markets (MK), pp. 453–461.
KDDKDD-2018-LianZZCXS #feature model #interactive #named
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems (JL, XZ, FZ, ZC, XX0, GS), pp. 1754–1763.
KDDKDD-2018-LiuXC
Context-aware Academic Collaborator Recommendation (ZL0, XX, LC0), pp. 1870–1879.
KDDKDD-2018-LiuZMZ #memory management #named
STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation (QL, YZ, RM, HZ), pp. 1831–1839.
KDDKDD-2018-LiZLHMC #behaviour #learning
Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors (ZL, HZ, QL0, ZH, TM, EC), pp. 1734–1743.
KDDKDD-2018-PeakeW #mining #modelling
Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems (GP, JW), pp. 2060–2069.
KDDKDD-2018-Raghavan #community #realtime
Building Near Realtime Contextual Recommendations for Active Communities on LinkedIn (HR), p. 2874.
KDDKDD-2018-TangW #learning #modelling #performance #ranking
Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System (JT, KW), pp. 2289–2298.
KDDKDD-2018-TayLH #multi #network
Multi-Pointer Co-Attention Networks for Recommendation (YT, ATL, SCH), pp. 2309–2318.
KDDKDD-2018-WangHZZZL #e-commerce
Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (JW, PH, HZ, ZZ, BZ, DLL), pp. 839–848.
KDDKDD-2018-WangYHLWH #memory management #network #streaming
Neural Memory Streaming Recommender Networks with Adversarial Training (QW, HY, ZH, DL, HW, ZH), pp. 2467–2475.
KDDKDD-2018-WangZHZ #learning #network
Supervised Reinforcement Learning with Recurrent Neural Network for Dynamic Treatment Recommendation (LW, WZ0, XH, HZ), pp. 2447–2456.
KDDKDD-2018-YeZXZGD #mobile #paradigm #parallel #performance
Multi-User Mobile Sequential Recommendation: An Efficient Parallel Computing Paradigm (ZY, LZ, KX, WZ, YG, YD), pp. 2624–2633.
KDDKDD-2018-YingHCEHL #graph #network
Graph Convolutional Neural Networks for Web-Scale Recommender Systems (RY, RH, KC, PE, WLH, JL), pp. 974–983.
KDDKDD-2018-ZhaoZDXTY #feedback #learning
Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (XZ, LZ, ZD, LX, JT, DY), pp. 1040–1048.
KDDKDD-2018-ZhuLZLHLG #learning
Learning Tree-based Deep Model for Recommender Systems (HZ, XL, PZ, GL, JH, HL, KG), pp. 1079–1088.
MoDELSMoDELS-2018-MokaddemSS #refactoring
Recommending Model Refactoring Rules from Refactoring Examples (CeM, HAS, ES), pp. 257–266.
ASEASE-2018-HassanRW #analysis #named
RUDSEA: recommending updates of Dockerfiles via software environment analysis (FH, RR, XW), pp. 796–801.
ASEASE-2018-HuangXXLW #api
API method recommendation without worrying about the task-API knowledge gap (QH, XX0, ZX, DL0, XW0), pp. 293–304.
ASEASE-2018-LiuHN #api #effectiveness #repository
Effective API recommendation without historical software repositories (XL, LH, VN), pp. 282–292.
ASEASE-2018-NagashimaH #higher-order #named #proving
PaMpeR: proof method recommendation system for Isabelle/HOL (YN, YH), pp. 362–372.
ASEASE-2018-Ye0WW #crowdsourcing #developer #personalisation
Personalized teammate recommendation for crowdsourced software developers (LY, HS0, XW, JW), pp. 808–813.
ICSE-2018-BarbosaG #exception
Global-aware recommendations for repairing violations in exception handling (EAB, AG), p. 858.
CASECASE-2018-LuoZ #matrix
Unconstrained Non-negative Factorization of High-dimensional and Sparse Matrices in Recommender Systems (XL0, MZ), pp. 1406–1413.
CSEETCSEET-2017-BollinRSSS #case study #experience #maturity #re-engineering
Applying a Maturity Model during a Software Engineering Course - Experiences and Recommendations (AB, ER, CS, VS, RS), pp. 9–18.
EDMEDM-2017-KhosraviCK #named
RiPLE: Recommendation in Peer-Learning Environments Based on Knowledge Gaps and Interests (HK, KMLC, KK).
EDMEDM-2017-MiF #adaptation #using
Adaptive Sequential Recommendation for Discussion Forums on MOOCs using Context Trees (FM, BF).
ICPCICPC-2017-ZhangCJLX #automation #debugging
Bug report enrichment with application of automated fixer recommendation (TZ0, JC, HJ, XL, XX0), pp. 230–240.
ICSMEICSME-2017-AsaduzzamanRSH #framework
Recommending Framework Extension Examples (MA, CKR, KAS, DH), pp. 456–466.
ICSMEICSME-2017-XuSHL #git #named #personalisation
REPERSP: Recommending Personalized Software Projects on GitHub (WX, XS, JH, BL0), pp. 648–652.
ICSMEICSME-2017-ZampettiNAKP #design #self #technical debt
Recommending when Design Technical Debt Should be Self-Admitted (FZ, CN, GA, FK, MDP), pp. 216–226.
SANERSANER-2017-GhafariM #framework #source code
A framework for classifying and comparing source code recommendation systems (MG, HM), pp. 555–556.
SANERSANER-2017-SantosPAEMD #source code
Recommending source code locations for system specific transformations (GS, KVRP, NA, AE, MdAM, SD), pp. 160–170.
SANERSANER-2017-ZhouLYZ #scalability
Scalable tag recommendation for software information sites (PZ, JL0, ZY, GZ), pp. 272–282.
SCAMSCAM-2017-WangPXFZ #feature model #interactive #process
Contextual Recommendation of Relevant Program Elements in an Interactive Feature Location Process (JW, XP0, ZX, KF, WZ), pp. 61–70.
IFM-2017-RahmanB #health #verification
Formal Verification of CNL Health Recommendations (FR, JKFB), pp. 357–371.
AIIDEAIIDE-2017-HankeC #game studies
A Recommender System for Hero Line-Ups in MOBA Games (LH, LC), pp. 43–49.
AIIDEAIIDE-2017-PadovaniFL #game studies #music #named
Bardo: Emotion-Based Music Recommendation for Tabletop Role-Playing Games (RRP, LNF, LHSL), pp. 214–220.
CIKMCIKM-2017-Christakopoulou #capacity #constraints
Recommendation with Capacity Constraints (KC, JK, AB), pp. 1439–1448.
CIKMCIKM-2017-DingLHM #fault tolerance #performance #using
Efficient Fault-Tolerant Group Recommendation Using alpha-beta-core (DD, HL, ZH0, NM), pp. 2047–2050.
CIKMCIKM-2017-DingZLTCZ #named #network #personalisation #ranking
BayDNN: Friend Recommendation with Bayesian Personalized Ranking Deep Neural Network (DD, MZ0, SYL, JT0, XC, ZHZ), pp. 1479–1488.
CIKMCIKM-2017-GyselMVRKGC #email
Reply With: Proactive Recommendation of Email Attachments (CVG, BM, MV, RR, GK, PG, NC), pp. 327–336.
CIKMCIKM-2017-HalderKS #concurrent #health #thread #topic #using
Health Forum Thread Recommendation Using an Interest Aware Topic Model (KH, MYK, KS), pp. 1589–1598.
CIKMCIKM-2017-LeL #performance #personalisation #ranking
Indexable Bayesian Personalized Ranking for Efficient Top-k Recommendation (DDL, HWL), pp. 1389–1398.
CIKMCIKM-2017-LiCY #graph #learning
Learning Graph-based Embedding For Time-Aware Product Recommendation (YL, WC, HY), pp. 2163–2166.
CIKMCIKM-2017-LiRCRLM
Neural Attentive Session-based Recommendation (JL, PR, ZC, ZR, TL, JM0), pp. 1419–1428.
CIKMCIKM-2017-LiTZYW #learning #representation
Content Recommendation by Noise Contrastive Transfer Learning of Feature Representation (YL, GT, WZ0, YY0, JW0), pp. 1657–1665.
CIKMCIKM-2017-ManotumruksaMO #collaboration #framework
A Deep Recurrent Collaborative Filtering Framework for Venue Recommendation (JM, CM, IO), pp. 1429–1438.
CIKMCIKM-2017-ManotumruksaMO17a #framework #multi #personalisation #ranking
A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation (JM, CM, IO), pp. 1469–1478.
CIKMCIKM-2017-NiuZ #collaboration #predict #sequence
Collaborative Sequence Prediction for Sequential Recommender (SN, RZ), pp. 2239–2242.
CIKMCIKM-2017-ParkLC #network
Deep Neural Networks for News Recommendations (KP, JL, JC), pp. 2255–2258.
CIKMCIKM-2017-PeiYSZBT #network
Interacting Attention-gated Recurrent Networks for Recommendation (WP, JY0, ZS, JZ0, AB, DMJT), pp. 1459–1468.
CIKMCIKM-2017-RafailidisC #collaboration #ranking
A Collaborative Ranking Model for Cross-Domain Recommendations (DR, FC), pp. 2263–2266.
CIKMCIKM-2017-Roy
An Improved Test Collection and Baselines for Bibliographic Citation Recommendation (DR), pp. 2271–2274.
CIKMCIKM-2017-WangFTH #behaviour #modelling #topic #visual notation
Improving the Gain of Visual Perceptual Behaviour on Topic Modeling for Text Recommendation (CW, YF, ZT, YH), pp. 2339–2342.
CIKMCIKM-2017-WangHLE #interactive #social
Interactive Social Recommendation (XW0, SCHH, CL, ME), pp. 357–366.
CIKMCIKM-2017-WangWZCG #online #semantics #social #topic
Joint Topic-Semantic-aware Social Recommendation for Online Voting (HW0, JW, MZ, JC, MG), pp. 347–356.
CIKMCIKM-2017-WuWHS #optimisation
Returning is Believing: Optimizing Long-term User Engagement in Recommender Systems (QW, HW, LH, YS), pp. 1927–1936.
CIKMCIKM-2017-WuY #e-commerce
Session-aware Information Embedding for E-commerce Product Recommendation (CW, MY), pp. 2379–2382.
CIKMCIKM-2017-XiaoMZLM #learning #personalisation #social
Learning and Transferring Social and Item Visibilities for Personalized Recommendation (XL0, MZ0, YZ, YL, SM), pp. 337–346.
CIKMCIKM-2017-YuCY #algebra #finite #matrix #rank
Low-Rank Matrix Completion over Finite Abelian Group Algebras for Context-Aware Recommendation (CAY, TSC, YHY), pp. 2415–2418.
CIKMCIKM-2017-ZhangACC #learning #representation
Joint Representation Learning for Top-N Recommendation with Heterogeneous Information Sources (YZ, QA, XC, WBC), pp. 1449–1458.
CIKMCIKM-2017-ZhuZHWZZY #collaboration #learning #multi
Broad Learning based Multi-Source Collaborative Recommendation (JZ, JZ, LH0, QW, BZ0, CZ, PSY), pp. 1409–1418.
ECIRECIR-2017-Anand0D #named
FairScholar: Balancing Relevance and Diversity for Scientific Paper Recommendation (AA, TC0, AD), pp. 753–757.
ECIRECIR-2017-FeyerSGAB #integration
Integration of the Scientific Recommender System Mr. DLib into the Reference Manager JabRef (SF, SS, BG, AA, JB), pp. 770–774.
ECIRECIR-2017-Recalde #framework #set #social
A Social Framework for Set Recommendation in Group Recommender Systems (LR), pp. 735–743.
ECIRECIR-2017-ZagheliAS #feedback #framework #modelling
Negative Feedback in the Language Modeling Framework for Text Recommendation (HRZ, MA, AS), pp. 662–668.
KDDKDD-2017-Antikacioglu0
Post Processing Recommender Systems for Diversity (AA, RR0), pp. 707–716.
KDDKDD-2017-Bauman0T #aspect-oriented
Aspect Based Recommendations: Recommending Items with the Most Valuable Aspects Based on User Reviews (KB, BL0, AT), pp. 717–725.
KDDKDD-2017-FuLTA #integer #programming
Unsupervised P2P Rental Recommendations via Integer Programming (YF, GL, MT, CCA), pp. 165–173.
KDDKDD-2017-HosseiniAKAFZR
Recurrent Poisson Factorization for Temporal Recommendation (SAH, KA, AK, AA, MF, HZ, HRR), pp. 847–855.
KDDKDD-2017-LiS #collaboration
Collaborative Variational Autoencoder for Recommender Systems (XL, JS), pp. 305–314.
KDDKDD-2017-OkuraTOT
Embedding-based News Recommendation for Millions of Users (SO, YT, SO, AT), pp. 1933–1942.
KDDKDD-2017-WangFWYDX #sentiment
A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users (HW0, YF, QW, HY, CD, HX), pp. 1135–1143.
KDDKDD-2017-WangYRTZYW #editing #learning
Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors' Demonstration (XW, LY, KR, GT, WZ0, YY0, JW0), pp. 2051–2059.
KDDKDD-2017-Xu0TTL #distance #higher-order #named #optimisation #rating
HoORaYs: High-order Optimization of Rating Distance for Recommender Systems (JX0, YY0, HT, XT, JL0), pp. 525–534.
KDDKDD-2017-YangBZY0 #approach #collaboration #learning
Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation (CY, LB, CZ0, QY0, JH0), pp. 1245–1254.
KDDKDD-2017-YangDSZFXBM #data-driven #framework #process
A Data-driven Process Recommender Framework (SY, XD, LS, YZ, RAF, HX, RSB, IM), pp. 2111–2120.
KDDKDD-2017-ZhaoYLSL #network
Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks (HZ, QY, JL, YS, DLL), pp. 635–644.
MoDELSMoDELS-2017-BatotKSF #heuristic #metamodelling #ocl
Heuristic-Based Recommendation for Metamodel — OCL Coevolution (EB, WK, HAS, MF), pp. 210–220.
ASEASE-2017-AsaduzzamanRSH #framework #named
FEMIR: a tool for recommending framework extension examples (MA, CKR, KAS, DH), pp. 967–972.
ASEASE-2017-GasparicG0 #development #ide
Context-aware integrated development environment command recommender systems (MG, TG, FR0), pp. 688–693.
ASEASE-2017-RolfsnesMB #predict
Predicting relevance of change recommendations (TR, LM, DWB), pp. 694–705.
ASEASE-2017-WangSFY #crowdsourcing #developer
Recommending crowdsourced software developers in consideration of skill improvement (ZW, HS0, YF, LY), pp. 717–722.
ESEC-FSEESEC-FSE-2017-DotzlerKKP
More accurate recommendations for method-level changes (GD, MK, PK, MP), pp. 798–808.
ESEC-FSEESEC-FSE-2017-Kogel #development #modelling
Recommender system for model driven software development (SK), pp. 1026–1029.
ICSE-2017-PalombaSCPGFL #mobile
Recommending and localizing change requests for mobile apps based on user reviews (FP, PS, AC, SP, HCG, FF, ADL), pp. 106–117.
ICSE-2017-PonzanelliSBMOP #developer
Supporting software developers with a holistic recommender system (LP, SS, GB, AM, RO, MDP, ML), pp. 94–105.
JCDLJCDL-2016-NishiokaS #matter #profiling #question #twitter #what
Profiling vs. Time vs. Content: What does Matter for Top-k Publication Recommendation based on Twitter Profiles? (CN, AS), pp. 171–180.
JCDLJCDL-2016-SchwarzerSMBMG #wiki
Evaluating Link-based Recommendations for Wikipedia (MS, MS, NM, CB, VM, BG), pp. 191–200.
EDMEDM-2016-Bydzovska16a
Course Enrollment Recommender System (HB), pp. 312–317.
EDMEDM-2016-DaiAY #analysis #learning #towards
Course Content Analysis: An Initiative Step toward Learning Object Recommendation Systems for MOOC Learners (YD, YA, MY), pp. 347–352.
EDMEDM-2016-LabartheBBY #question #student
Does a Peer Recommender Foster Students' Engagement in MOOCs? (HL, FB, RB, KY), pp. 418–423.
EDMEDM-2016-SweeneyLRJ #approach #performance #predict #student
Next-Term Student Performance Prediction: A Recommender Systems Approach (MS, JL, HR, AJ), p. 7.
ICPCICPC-2016-TianWLG #debugging #learning #rank
Learning to rank for bug report assignee recommendation (YT0, DW, DL0, CLG), pp. 1–10.
ICSMEICSME-2016-0001KI #code review #overview #perspective #search-based
Search-Based Peer Reviewers Recommendation in Modern Code Review (AO0, RGK, KI), pp. 367–377.
ICSMEICSME-2016-AlghmadiSSH #approach #automation #performance #testing
An Automated Approach for Recommending When to Stop Performance Tests (HMA, MDS, WS, AEH), pp. 279–289.
ICSMEICSME-2016-ThungLLL #automation #linux
Recommending Code Changes for Automatic Backporting of Linux Device Drivers (FT, XBDL, DL0, JLL), pp. 222–232.
MSRMSR-2016-DiamantopoulosT #component #named #source code #usability
QualBoa: reusability-aware recommendations of source code components (TGD, KT, ALS), pp. 488–491.
MSRMSR-2016-RolfsnesMABB #using
Improving change recommendation using aggregated association rules (TR, LM, SDA, RB, DWB), pp. 73–84.
SANERSANER-2016-KarimKP #android #mining
Mining Android Apps to Recommend Permissions (MYK, HHK, MDP), pp. 427–437.
SANERSANER-2016-RahmanRL #api #automation #crowdsourcing #named #using
RACK: Automatic API Recommendation Using Crowdsourced Knowledge (MMR0, CKR, DL0), pp. 349–359.
SANERSANER-2016-RochaVMM #debugging #empirical
An Empirical Study on Recommendations of Similar Bugs (HR, MTV, HMN, GCM), pp. 46–56.
SCAMSCAM-2016-DSouzaYL #api #python
Collective Intelligence for Smarter API Recommendations in Python (ARD, DY, CVL), pp. 51–60.
CIKMCIKM-2016-ChenDWST #data mining #mining
From Recommendation to Profile Inference (Rec2PI): A Value-added Service to Wi-Fi Data Mining (CC0, FD, KW0, VS0, AT), pp. 1503–1512.
CIKMCIKM-2016-ChenNLXA #feedback #modelling #scalability
Separating-Plane Factorization Models: Scalable Recommendation from One-Class Implicit Feedback (HC, DN, KL, YX, MA), pp. 669–678.
CIKMCIKM-2016-ChenOX #learning
Learning Points and Routes to Recommend Trajectories (DC, CSO, LX), pp. 2227–2232.
CIKMCIKM-2016-Fernandez-Tobias #web
Memory-based Recommendations of Entities for Web Search Users (IFT, RB), pp. 35–44.
CIKMCIKM-2016-GaoWQZYH #collaboration #social
Collaborative Social Group Influence for Event Recommendation (LG, JW0, ZQ, CZ0, HY, YH0), pp. 1941–1944.
CIKMCIKM-2016-HuangCCZ #query
KB-Enabled Query Recommendation for Long-Tail Queries (ZH0, BC, RC, YZ), pp. 2107–2112.
CIKMCIKM-2016-KangPYC #graph
Top-N Recommendation on Graphs (ZK, CP, MY, QC), pp. 2101–2106.
CIKMCIKM-2016-LiSNLF #hashtag #learning #rank #topic #twitter
Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank (QL, SS, AN, XL, RF), pp. 2085–2088.
CIKMCIKM-2016-LuCL #mining #topic #video
Scarce Feature Topic Mining for Video Recommendation (WL0, KFLC, KL), pp. 1993–1996.
CIKMCIKM-2016-LuQZHG #approach #network #social
Location-aware Friend Recommendation in Event-based Social Networks: A Bayesian Latent Factor Approach (YL, ZQ, CZ0, YH0, LG0), pp. 1957–1960.
CIKMCIKM-2016-MahajanKBPSKG #enterprise #hashtag
Hashtag Recommendation for Enterprise Applications (DM, VK, CB, SP, SS, SSK, JG), pp. 893–902.
CIKMCIKM-2016-ManotumruksaMO #modelling #using
Regularising Factorised Models for Venue Recommendation using Friends and their Comments (JM, CM, IO), pp. 1981–1984.
CIKMCIKM-2016-PiaoB #concept #modelling #personalisation #twitter
User Modeling on Twitter with WordNet Synsets and DBpedia Concepts for Personalized Recommendations (GP, JGB), pp. 2057–2060.
CIKMCIKM-2016-RafailidisC #collaboration #ranking #social
Joint Collaborative Ranking with Social Relationships in Top-N Recommendation (DR, FC), pp. 1393–1402.
CIKMCIKM-2016-SoulierTN #collaboration #social #twitter
Answering Twitter Questions: a Model for Recommending Answerers through Social Collaboration (LS, LT, GHN), pp. 267–276.
CIKMCIKM-2016-SubbianAH #streaming
Recommendations For Streaming Data (KS, CCA, KH), pp. 2185–2190.
CIKMCIKM-2016-TanWX #approach #network
A Neural Network Approach to Quote Recommendation in Writings (JT, XW0, JX), pp. 65–74.
CIKMCIKM-2016-WangLCLV #personalisation
Improving Personalized Trip Recommendation by Avoiding Crowds (XW, CL, JC, KHL0, TV), pp. 25–34.
CIKMCIKM-2016-WangLEWC #social
Social Recommendation with Strong and Weak Ties (XW0, WL, ME, CW0, CC0), pp. 5–14.
CIKMCIKM-2016-WangLL
Improving Advertisement Recommendation by Enriching User Browser Cookie Attributes (LW, KcL, QL), pp. 2401–2404.
CIKMCIKM-2016-Wu0XTL #named #using #word
Tag2Word: Using Tags to Generate Words for Content Based Tag Recommendation (YW, YY0, FX0, HT, JL0), pp. 2287–2292.
CIKMCIKM-2016-XieYWXCW #graph #learning
Learning Graph-based POI Embedding for Location-based Recommendation (MX, HY, HW, FX, WC, SW), pp. 15–24.
CIKMCIKM-2016-XuCLMM #personalisation #semantics #similarity #using
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling (ZX, CC0, TL, YM, XM), pp. 1921–1924.
CIKMCIKM-2016-ZhangWYLLZ #social
Global and Local Influence-based Social Recommendation (QZ, JW0, HY, WL, GL, CZ), pp. 1917–1920.
ECIRECIR-2016-Boratto #aspect-oriented #challenge #research #state of the art
Group Recommender Systems: State of the Art, Emerging Aspects and Techniques, and Research Challenges (LB), pp. 889–892.
ECIRECIR-2016-LinOLVVKP #facebook
A Business Zone Recommender System Based on Facebook and Urban Planning Data (JL, RJO, EPL, CV, AV, ATK, PKP), pp. 641–647.
ECIRECIR-2016-MustoSGL #learning #wiki #word
Learning Word Embeddings from Wikipedia for Content-Based Recommender Systems (CM, GS, MdG, PL), pp. 729–734.
ECIRECIR-2016-ValcarcePB #collaboration #feedback #performance #pseudo
Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation (DV, JP, AB), pp. 602–613.
ECIRECIR-2016-WangJLSZL #cumulative #knowledge base
Cold Start Cumulative Citation Recommendation for Knowledge Base Acceleration (JW, JJ, LL, DS, ZZ, CYL), pp. 748–753.
ICMLICML-2016-HoilesS #bound #design #education #evaluation
Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum Design (WH, MvdS), pp. 1596–1604.
ICMLICML-2016-SchnabelSSCJ #evaluation #learning
Recommendations as Treatments: Debiasing Learning and Evaluation (TS, AS, AS, NC, TJ), pp. 1670–1679.
KDDKDD-2016-AckermannRHKBKG #design #policy
Designing Policy Recommendations to Reduce Home Abandonment in Mexico (KA, EBR, SH, TAK, PvdB, RK, RG, JCG), pp. 13–20.
KDDKDD-2016-Bressan0PRT #social
The Limits of Popularity-Based Recommendations, and the Role of Social Ties (MB0, SL0, AP, PR, ET), pp. 745–754.
KDDKDD-2016-Christakopoulou #towards
Towards Conversational Recommender Systems (KC, FR, KH), pp. 815–824.
KDDKDD-2016-JainPV #multi #ranking
Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications (HJ, YP, MV), pp. 935–944.
KDDKDD-2016-LiGHZ #learning
Point-of-Interest Recommendations: Learning Potential Check-ins from Friends (HL, YG, RH, HZ), pp. 975–984.
KDDKDD-2016-LiuLLQX #assessment
Unified Point-of-Interest Recommendation with Temporal Interval Assessment (YL, CL, BL0, MQ, HX), pp. 1015–1024.
KDDKDD-2016-PerozziSST #network
When Recommendation Goes Wrong: Anomalous Link Discovery in Recommendation Networks (BP, MS, JS, MT), pp. 569–578.
KDDKDD-2016-SunLGXX #automation #data-driven #development
Data-driven Automatic Treatment Regimen Development and Recommendation (LS, CL, CG, HX, YX), pp. 1865–1874.
KDDKDD-2016-TaghaviLK #machine learning #memory management #using
Compute Job Memory Recommender System Using Machine Learning (TT, ML, YK), pp. 609–616.
KDDKDD-2016-TangLCA #empirical #feedback #multi
An Empirical Study on Recommendation with Multiple Types of Feedback (LT, BL, BCC, DA), pp. 283–292.
KDDKDD-2016-WangELBZGC #challenge #email
The Million Domain Challenge: Broadcast Email Prioritization by Cross-domain Recommendation (BW, ME, YL, JB, YZ, ZG, DC), pp. 1895–1904.
KDDKDD-2016-ZengWML #multi #online
Online Context-Aware Recommendation with Time Varying Multi-Armed Bandit (CZ, QW, SM, TL0), pp. 2025–2034.
KDDKDD-2016-ZhangYLXM #collaboration #knowledge base
Collaborative Knowledge Base Embedding for Recommender Systems (FZ, NJY, DL, XX0, WYM), pp. 353–362.
ASEASE-2016-AlmhanaMK0 #debugging #multi #using
Recommending relevant classes for bug reports using multi-objective search (RA, WM, MK, AO), pp. 286–295.
ASEASE-2016-ChenX #automation #library #named #programming language
SimilarTech: automatically recommend analogical libraries across different programming languages (CC, ZX), pp. 834–839.
ASEASE-2016-HannebauerPSG #automation #code review #comparison #empirical
Automatically recommending code reviewers based on their expertise: an empirical comparison (CH, MP, SS, VG), pp. 99–110.
ASEASE-2016-MoonenABR #guidelines #mining #using
Practical guidelines for change recommendation using association rule mining (LM, SDA, DB, TR), pp. 732–743.
ASEASE-2016-ProkschANM
Evaluating the evaluations of code recommender systems: a reality check (SP, SA, SN, MM), pp. 111–121.
ASEASE-2016-RahmanRRC #code review #git #named
CORRECT: code reviewer recommendation at GitHub for Vendasta technologies (MMR, CKR, JR, JAC), pp. 792–797.
ASEASE-2016-RazaF #analysis #automation #development #named #performance
ProcessPAIR: a tool for automated performance analysis and improvement recommendation in software development (MR, JPF), pp. 798–803.
ASEASE-2016-Thung #api #development
API recommendation system for software development (FT), pp. 896–899.
FSEFSE-2016-CostaFMS #branch #named
TIPMerge: recommending experts for integrating changes across branches (CC, JF, LM, AS), pp. 523–534.
FSEFSE-2016-CostaFSM #branch #developer #named
TIPMerge: recommending developers for merging branches (CC, JF, AS, LM), pp. 998–1002.
FSEFSE-2016-LinPCDZZ #architecture #interactive #refactoring #search-based
Interactive and guided architectural refactoring with search-based recommendation (YL0, XP0, YC, DD, DZ, WZ), pp. 535–546.
FSEFSE-2016-NguyenHCNMRND #api #fine-grained #learning #statistics #using
API code recommendation using statistical learning from fine-grained changes (ATN0, MH, MC, HAN, LM, ER, TNN, DD), pp. 511–522.
FSEFSE-2016-SorboPASVCG #what
What would users change in my app? summarizing app reviews for recommending software changes (ADS, SP, CVA, JS, CAV, GC, HCG), pp. 499–510.
FSEFSE-2016-ZhangJKKGH #developer
Bing developer assistant: improving developer productivity by recommending sample code (HZ0, AJ, GK, CK, SG, WH), pp. 956–961.
GPCEGPCE-2016-PereiraMKSS #personalisation #product line
A feature-based personalized recommender system for product-line configuration (JAP, PM, SK, MS, GS), pp. 120–131.
ICSTICST-2016-LuYAZ #product line
Nonconformity Resolving Recommendations for Product Line Configuration (HL0, TY0, SA0, LZ0), pp. 57–68.
HTHT-2015-HaKK #on the
On Recommending Newly Published Academic Papers (JH, SHK, SWK), pp. 329–330.
HTHT-2015-LeeHKGH #on the
On Recommending Job Openings (YCL, JH, SWK, SG, JYH), pp. 331–332.
HTHT-2015-Orellana-Rodriguez #mining
Mining Affective Context in Short Films for Emotion-Aware Recommendation (COR, EDA, WN), pp. 185–194.
HTHT-2015-PeraN
Analyzing Book-Related Features to Recommend Books for Emergent Readers (MSP, YKN), pp. 221–230.
SIGMODSIGMOD-2015-HuangCZJX #named #realtime
TencentRec: Real-time Stream Recommendation in Practice (YH, BC, WZ, JJ, YX), pp. 227–238.
SIGMODSIGMOD-2015-RoyLL
From Group Recommendations to Group Formation (SBR, LVSL, RL), pp. 1603–1616.
SIGMODSIGMOD-2015-ZhouCZCHW #community #online #video
Online Video Recommendation in Sharing Community (XZ, LC, YZ, LC, GH, CW), pp. 1645–1656.
TPDLTPDL-2015-BeelL #comparison #online #user study
A Comparison of Offline Evaluations, Online Evaluations, and User Studies in the Context of Research-Paper Recommender Systems (JB, SL), pp. 153–168.
VLDBVLDB-2015-ChenGXJC #distributed #image #named #retrieval
I2RS: A Distributed Geo-Textual Image Retrieval and Recommendation System (LC, YG, ZX, CSJ, GC), pp. 1884–1895.
VLDBVLDB-2015-GuerraouiKPT #difference #named #privacy
D2P: Distance-Based Differential Privacy in Recommenders (RG, AMK, RP, MT), pp. 862–873.
VLDBVLDB-2015-VartakRMPP #data-driven #named #performance #visual notation #visualisation
SEEDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics (MV, SR, SM, AGP, NP), pp. 2182–2193.
EDMEDM-2015-AgrawalVLP #named #video
YouEDU: Addressing Confusion in MOOC Discussion Forums by Recommending Instructional Video Clips (AA, JV, SL, AP), pp. 297–304.
EDMEDM-2015-MihaescuPI #education #online
Intelligent Tutor Recommender System for On-Line Educational Environments (MCM, PSP, CMI), pp. 516–519.
EDMEDM-2015-WangZ #education #process
Discovering Process in Curriculum Data to Provide Recommendation (RW, ORZ), pp. 580–581.
ICPCICPC-2015-AmintabarHG #development #exception #ide #named
ExceptionTracer: a solution recommender for exceptions in an integrated development environment (VA, AH, MG), pp. 299–302.
ICSMEICSME-2015-AsaduzzamanRMS #api #parametricity
Exploring API method parameter recommendations (MA, CKR, SM, KAS), pp. 271–280.
ICSMEICSME-2015-AsaduzzamanRS #api #named #parametricity
PARC: Recommending API methods parameters (MA, CKR, KAS), pp. 330–332.
ICSMEICSME-2015-XiaLWY #analysis #overview
Who should review this change?: Putting text and file location analyses together for more accurate recommendations (XX, DL, XW, XY), pp. 261–270.
MSRMSR-2015-WangMG #api #developer
Recommending Posts concerning API Issues in Developer Q&A Sites (WW, HM, MWG), pp. 224–234.
SANERSANER-2015-ThongtanunamTKY #approach #code review #overview #perspective
Who should review my code? A file location-based code-reviewer recommendation approach for Modern Code Review (PT, CT, RGK, NY, HI, KiM), pp. 141–150.
SCAMSCAM-2015-RahmanRK #crowdsourcing #source code #using
Recommending insightful comments for source code using crowdsourced knowledge (MMR, CKR, IK), pp. 81–90.
FDGFDG-2015-KaltmanWLC #development #game studies
Methods and Recommendations for Archival Records of Game Development: The Case of Academic Games (EK, NWF, HL, CC).
CHICHI-2015-LoeppH0 #algorithm #information management #interactive
Blended Recommending: Integrating Interactive Information Filtering and Algorithmic Recommender Techniques (BL, KH, JZ), pp. 975–984.
CSCWCSCW-2015-ChangHT #using
Using Groups of Items to Bootstrap New Users in Recommender Systems (SC, FMH, LGT), pp. 1258–1269.
HCIDUXU-IXD-2015-WalterKWAB #adaptation #question #what
What Are the Expectations of Users of an Adaptive Recommendation Service Which Aims to Reduce Driver Distraction? (NW, BK, CW, TA, KB), pp. 517–528.
HCIHIMI-IKC-2015-BrunsVGZS #personalisation #visual notation #what
What Should I Read Next? A Personalized Visual Publication Recommender System (SB, ACV, CG, MZ, US), pp. 89–100.
HCIHIMI-IKC-2015-Kaewkiriya #design #framework #student
Design of Framework for Students Recommendation System in Information Technology Skills (TK), pp. 109–117.
HCIHIMI-IKC-2015-VerstocktSB
Map-Based Linking of Geographic User and Content Profiles for Hyperlocal Content Recommendation (SV, VS, KB), pp. 53–63.
HCILCT-2015-Iitaka #online
Recommendation Engine for an Online Drill System (TI), pp. 238–248.
HCILCT-2015-RodriguezOD #hybrid #learning #repository #student
A Student-Centered Hybrid Recommender System to Provide Relevant Learning Objects from Repositories (PAR, DAO, NDD), pp. 291–300.
HCILCT-2015-Sirisaengtaksin #approach #design #education #mobile #online #research
A Notification and Recommender Mobile App for Educational Online Discussion: A Design Research Approach (KS, LO, NA), pp. 325–336.
ICEISICEIS-v1-2015-Kozmina #empirical
An Empirical Study of Recommendations in OLAP Reporting Tool (NK), pp. 303–312.
ICEISICEIS-v2-2015-CeredaN #adaptation #automaton
A Recommendation Engine based on Adaptive Automata (PRMC, JJN), pp. 594–601.
ICEISICEIS-v2-2015-SmirnovP #architecture #hybrid #network #peer-to-peer #privacy
Privacy-preserving Hybrid Peer-to-Peer Recommendation System Architecture — Locality-Sensitive Hashing in Structured Overlay Network (AVS, AP), pp. 532–542.
CIKMCIKM-2015-DuanZ #coordination #mining #representation
Mining Coordinated Intent Representation for Entity Search and Recommendation (HD, CZ), pp. 333–342.
CIKMCIKM-2015-HeCKC #aspect-oriented #modelling #named
TriRank: Review-aware Explainable Recommendation by Modeling Aspects (XH0, TC0, MYK, XC0), pp. 1661–1670.
CIKMCIKM-2015-JiangLG
Chronological Citation Recommendation with Information-Need Shifting (ZJ, XL, LG), pp. 1291–1300.
CIKMCIKM-2015-LiangB #personalisation #probability #rating
A Probabilistic Rating Auto-encoder for Personalized Recommender Systems (HL, TB), pp. 1863–1866.
CIKMCIKM-2015-ManSHC #adaptation #matrix #multi
Context-Adaptive Matrix Factorization for Multi-Context Recommendation (TM, HS, JH, XC), pp. 901–910.
CIKMCIKM-2015-PerezSLK #approach
Category-Driven Approach for Local Related Business Recommendations (YP, MS, ML, SK), pp. 73–82.
CIKMCIKM-2015-QianHSR
Structured Sparse Regression for Recommender Systems (MQ, LH, YS, SR), pp. 1895–1898.
CIKMCIKM-2015-ShinCLD #induction #matrix
Tumblr Blog Recommendation with Boosted Inductive Matrix Completion (DS, SC, KCL, ISD), pp. 203–212.
CIKMCIKM-2015-ShiZLYYW #network #personalisation #semantics
Semantic Path based Personalized Recommendation on Weighted Heterogeneous Information Networks (CS, ZZ, PL, PSY, YY, BW0), pp. 453–462.
CIKMCIKM-2015-SongCYL #personalisation
Personalized Recommendation Meets Your Next Favorite (QS, JC0, TY, HL), pp. 1775–1778.
CIKMCIKM-2015-SwezeyC
Recommending Short-lived Dynamic Packages for Golf Booking Services (RS, YjC), pp. 1779–1782.
CIKMCIKM-2015-VahabiKGH #named
DifRec: A Social-Diffusion-Aware Recommender System (HV, IK, FG, MH), pp. 1481–1490.
CIKMCIKM-2015-WangTL #towards
Toward Dual Roles of Users in Recommender Systems (SW, JT, HL0), pp. 1651–1660.
CIKMCIKM-2015-YangHQXW #graph
A Graph-based Recommendation across Heterogeneous Domains (DY, JH, HQ, YX, WW0), pp. 463–472.
CIKMCIKM-2015-YinZSWS #behaviour #modelling
Joint Modeling of User Check-in Behaviors for Point-of-Interest Recommendation (HY, XZ0, YS, HW0, SWS), pp. 1631–1640.
CIKMCIKM-2015-ZhangCZ #framework #named
ORec: An Opinion-Based Point-of-Interest Recommendation Framework (JDZ, CYC, YZ), pp. 1641–1650.
CIKMCIKM-2015-ZhangLWS #nondeterminism #personalisation
Personalized Trip Recommendation with POI Availability and Uncertain Traveling Time (CZ, HL, KW0, JS), pp. 911–920.
CIKMCIKM-2015-ZhangLY #enterprise #social
Enterprise Social Link Recommendation (JZ, YL, PSY), pp. 841–850.
CIKMCIKM-2015-ZhangW #collaboration #retrieval #social
Location and Time Aware Social Collaborative Retrieval for New Successive Point-of-Interest Recommendation (WZ0, JW), pp. 1221–1230.
CIKMCIKM-2015-ZhaoMK #modelling #personalisation
Improving Latent Factor Models via Personalized Feature Projection for One Class Recommendation (TZ, JJM, IK), pp. 821–830.
CIKMCIKM-2015-ZhaoZK #analysis #game studies #network #social
Exploiting Game Theoretic Analysis for Link Recommendation in Social Networks (TZ, HVZ, IK), pp. 851–860.
ECIRECIR-2015-HopfgartnerB #realtime
Join the Living Lab: Evaluating News Recommendations in Real-Time (FH, TB), pp. 826–829.
ECIRECIR-2015-SchedlHFT #algorithm #music #on the
On the Influence of User Characteristics on Music Recommendation Algorithms (MS, DH, KF, MT), pp. 339–345.
ECIRECIR-2015-ValcarcePB #case study #modelling
A Study of Smoothing Methods for Relevance-Based Language Modelling of Recommender Systems (DV, JP, AB), pp. 346–351.
ECIRECIR-2015-WangHS0W0 #network #problem #social #towards
Toward the New Item Problem: Context-Enhanced Event Recommendation in Event-Based Social Networks (ZW, PH, LS, KC, SW, GC), pp. 333–338.
KDDKDD-2015-BerkovskyF #personalisation #web
Web Personalization and Recommender Systems (SB, JF), pp. 2307–2308.
KDDKDD-2015-FrenoSJA #modelling #ranking
One-Pass Ranking Models for Low-Latency Product Recommendations (AF, MS, RJ, CA), pp. 1789–1798.
KDDKDD-2015-GrbovicRDBSBS #e-commerce #scalability
E-commerce in Your Inbox: Product Recommendations at Scale (MG, VR, ND, NB, JS, VB, DS), pp. 1809–1818.
KDDKDD-2015-HolleczekAYJAGL #agile #metric
Traffic Measurement and Route Recommendation System for Mass Rapid Transit (MRT) (TH, DTA, SY, YJ, SA, HLG, SL, ASN), pp. 1859–1868.
KDDKDD-2015-HsiehLZ #big data #quality
Inferring Air Quality for Station Location Recommendation Based on Urban Big Data (HPH, SDL, YZ), pp. 437–446.
KDDKDD-2015-JiangZZY #e-commerce #predict
Life-stage Prediction for Product Recommendation in E-commerce (PJ, YZ, YZ, QY), pp. 1879–1888.
KDDKDD-2015-Kawamae #realtime
Real Time Recommendations from Connoisseurs (NK), pp. 537–546.
KDDKDD-2015-QianCMSL #named
SCRAM: A Sharing Considered Route Assignment Mechanism for Fair Taxi Route Recommendations (SQ, JC, FLM, IS, ML), pp. 955–964.
KDDKDD-2015-SongMT #network #performance
Efficient Latent Link Recommendation in Signed Networks (DS, DAM, DT), pp. 1105–1114.
KDDKDD-2015-WangWY #collaboration #learning
Collaborative Deep Learning for Recommender Systems (HW, NW, DYY), pp. 1235–1244.
KDDKDD-2015-WangYCSSZ #generative #named
Geo-SAGE: A Geographical Sparse Additive Generative Model for Spatial Item Recommendation (WW, HY, LC, YS, SWS, XZ), pp. 1255–1264.
KDDKDD-2015-ZhangW
A Collective Bayesian Poisson Factorization Model for Cold-start Local Event Recommendation (WZ, JW), pp. 1455–1464.
KDDKDD-2015-ZhongJYYZL
Stock Constrained Recommendation in Tmall (WZ, RJ, CY, XY, QZ, QL), pp. 2287–2296.
KDDKDD-2015-ZhongLSR #scalability
Building Discriminative User Profiles for Large-scale Content Recommendation (EZ, NL, YS, SR), pp. 2277–2286.
RecSysRecSys-2015-Abel
We Know Where You Should Work Next Summer: Job Recommendations (FA), p. 230.
RecSysRecSys-2015-AghdamHMB #adaptation #markov #modelling #using
Adapting Recommendations to Contextual Changes Using Hierarchical Hidden Markov Models (MHA, NH, BM, RDB), pp. 241–244.
RecSysRecSys-2015-AharonAADGS #named
ExcUseMe: Asking Users to Help in Item Cold-Start Recommendations (MA, OA, NAE, DDC, SG, OS), pp. 83–90.
RecSysRecSys-2015-BanksRS #game studies #using
The Recommendation Game: Using a Game-with-a-Purpose to Generate Recommendation Data (SB, RR, BS), pp. 305–308.
RecSysRecSys-2015-BansalDB #profiling
Content Driven User Profiling for Comment-Worthy Recommendations of News and Blog Articles (TB, MKD, CB), pp. 195–202.
RecSysRecSys-2015-BarjastehFMER
Cold-Start Item and User Recommendation with Decoupled Completion and Transduction (IB, RF, FM, AHE, HR), pp. 91–98.
RecSysRecSys-2015-BetzalelSR #exclamation #quote
“Please, Not Now!”: A Model for Timing Recommendations (NDB, BS, LR), pp. 297–300.
RecSysRecSys-2015-BistaffaFCR #scalability #social
Recommending Fair Payments for Large-Scale Social Ridesharing (FB, AF, GC, SDR), pp. 139–146.
RecSysRecSys-2015-Bourke #multi
The Application of Recommender Systems in a Multi Site, Multi Domain Environment (SB), p. 229.
RecSysRecSys-2015-ChaneyBE #network #personalisation #probability #social #using
A Probabilistic Model for Using Social Networks in Personalized Item Recommendation (AJBC, DMB, TER), pp. 43–50.
RecSysRecSys-2015-ChristoffelPNB #random #scalability
Blockbusters and Wallflowers: Accurate, Diverse, and Scalable Recommendations with Random Walks (FC, BP, CN, AB), pp. 163–170.
RecSysRecSys-2015-DalyBS
Crowd Sourcing, with a Few Answers: Recommending Commuters for Traffic Updates (ED, MB, FS), pp. 253–256.
RecSysRecSys-2015-Das
Making Meaningful Restaurant Recommendations At OpenTable (SD), p. 235.
RecSysRecSys-2015-EkstrandKHK #algorithm #case study
Letting Users Choose Recommender Algorithms: An Experimental Study (MDE, DK, FMH, JAK), pp. 11–18.
RecSysRecSys-2015-ElsweilerH #automation #towards
Towards Automatic Meal Plan Recommendations for Balanced Nutrition (DE, MH), pp. 313–316.
RecSysRecSys-2015-ForsatiBMER #algorithm #named #performance #trust
PushTrust: An Efficient Recommendation Algorithm by Leveraging Trust and Distrust Relations (RF, IB, FM, AHE, HR), pp. 51–58.
RecSysRecSys-2015-GeRM
Health-aware Food Recommender System (MG, FR, DM), pp. 333–334.
RecSysRecSys-2015-Geuens #behaviour #hybrid
Factorization Machines for Hybrid Recommendation Systems Based on Behavioral, Product, and Customer Data (SG), pp. 379–382.
RecSysRecSys-2015-GriesnerAN #matrix #towards
POI Recommendation: Towards Fused Matrix Factorization with Geographical and Temporal Influences (JBG, TA, HN), pp. 301–304.
RecSysRecSys-2015-Guardia-Sebaoun #modelling #performance
Latent Trajectory Modeling: A Light and Efficient Way to Introduce Time in Recommender Systems (ÉGS, VG, PG), pp. 281–284.
RecSysRecSys-2015-Guy #personalisation
The Role of User Location in Personalized Search and Recommendation (IG), p. 236.
RecSysRecSys-2015-HarperXKCCT
Putting Users in Control of their Recommendations (FMH, FX, HK, KC, SC, LGT), pp. 3–10.
RecSysRecSys-2015-HarveyE #automation #personalisation
Automated Recommendation of Healthy, Personalised Meal Plans (MH, DE), pp. 327–328.
RecSysRecSys-2015-HopfgartnerKHT #realtime
Real-time Recommendation of Streamed Data (FH, BK, TH, RT), pp. 361–362.
RecSysRecSys-2015-HuD #machine learning #scalability
Scalable Recommender Systems: Where Machine Learning Meets Search (SYDH, JD), pp. 365–366.
RecSysRecSys-2015-JannachLJ #adaptation #evaluation
Adaptation and Evaluation of Recommendations for Short-term Shopping Goals (DJ, LL, MJ), pp. 211–218.
RecSysRecSys-2015-KangDS
Elsevier Journal Finder: Recommending Journals for your Paper (NK, MAD, RJAS), pp. 261–264.
RecSysRecSys-2015-KaragiannakisGS #automation #category theory
OSMRec Tool for Automatic Recommendation of Categories on Spatial Entities in OpenStreetMap (NK, GG, DS, SA), pp. 337–338.
RecSysRecSys-2015-KoukiFFEG #flexibility #framework #hybrid #named #probability
HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems (PK, SF, JRF, ME, LG), pp. 99–106.
RecSysRecSys-2015-KowaldL #algorithm #case study #comparative #folksonomy
Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study (DK, EL), pp. 265–268.
RecSysRecSys-2015-LerallutGR #realtime #scalability
Large-Scale Real-Time Product Recommendation at Criteo (RL, DG, NLR), p. 232.
RecSysRecSys-2015-LimML #feedback
Top-N Recommendation with Missing Implicit Feedback (DL, JM, GRGL), pp. 309–312.
RecSysRecSys-2015-LiuK #named
Kibitz: End-to-End Recommendation System Builder (QL, DRK), pp. 335–336.
RecSysRecSys-2015-LiWTM #community #predict #rating #social
Overlapping Community Regularization for Rating Prediction in Social Recommender Systems (HL, DW, WT, NM), pp. 27–34.
RecSysRecSys-2015-LuC #personalisation
Exploiting Geo-Spatial Preference for Personalized Expert Recommendation (HL, JC), pp. 67–74.
RecSysRecSys-2015-Ludmann #data type #online
Online Recommender Systems based on Data Stream Management Systems (CAL), pp. 391–394.
RecSysRecSys-2015-MacedoMS #network #social
Context-Aware Event Recommendation in Event-based Social Networks (AQdM, LBM, RLTS), pp. 123–130.
RecSysRecSys-2015-MagnusonDM #process #twitter #using
Event Recommendation using Twitter Activity (AM, VD, DM), pp. 331–332.
RecSysRecSys-2015-MaksaiGF #evaluation #metric #online #performance #predict
Predicting Online Performance of News Recommender Systems Through Richer Evaluation Metrics (AM, FG, BF), pp. 179–186.
RecSysRecSys-2015-MarinhoTP #algorithm #question
Are Real-World Place Recommender Algorithms Useful in Virtual World Environments? (LBM, CT, DP), pp. 245–248.
RecSysRecSys-2015-MojsilovicV #enterprise #perspective
Assessing Expertise in the Enterprise: The Recommender Point of View (AM, KRV), p. 231.
RecSysRecSys-2015-Nemeth #scalability
Scaling Up Recommendation Services in Many Dimensions (BN), p. 233.
RecSysRecSys-2015-NeumannS
Recommendations for Live TV (JN, HS), p. 228.
RecSysRecSys-2015-NovA #social #symmetry
Asymmetric Recommendations: The Interacting Effects of Social Ratings? Direction and Strength on Users’ Ratings (ON, OA), pp. 249–252.
RecSysRecSys-2015-SaidB #evaluation
Replicable Evaluation of Recommender Systems (AS, AB), pp. 363–364.
RecSysRecSys-2015-Salehi-AbariB #network #social
Preference-oriented Social Networks: Group Recommendation and Inference (ASA, CB), pp. 35–42.
RecSysRecSys-2015-Santos #hybrid
A Hybrid Recommendation System Based on Human Curiosity (AMdS), pp. 367–370.
RecSysRecSys-2015-SeminarioW #collaboration
Nuke ’Em Till They Go: Investigating Power User Attacks to Disparage Items in Collaborative Recommenders (CES, DCW), pp. 293–296.
RecSysRecSys-2015-ShalomBRZA #matter #quality
Data Quality Matters in Recommender Systems (OSS, SB, RR, EZ, AA), pp. 257–260.
RecSysRecSys-2015-SongCL #incremental #matrix
Incremental Matrix Factorization via Feature Space Re-learning for Recommender System (QS, JC, HL), pp. 277–280.
RecSysRecSys-2015-SousaDBM #analysis #named #network
CNARe: Co-authorship Networks Analysis and Recommendations (GAdS, MAD, MAB, MMM), pp. 329–330.
RecSysRecSys-2015-SteckZJ #interactive #tutorial
Interactive Recommender Systems: Tutorial (HS, RvZ, CJ), pp. 359–360.
RecSysRecSys-2015-Unger
Latent Context-Aware Recommender Systems (MU), pp. 383–386.
RecSysRecSys-2015-Valcarce #modelling #statistics
Exploring Statistical Language Models for Recommender Systems (DV), pp. 375–378.
RecSysRecSys-2015-ValcarcePB #case study #modelling
A Study of Priors for Relevance-Based Language Modelling of Recommender Systems (DV, JP, AB), pp. 237–240.
RecSysRecSys-2015-VerstrepenG
Top-N Recommendation for Shared Accounts (KV, BG), pp. 59–66.
RecSysRecSys-2015-ZhaoZ0
Risk-Hedged Venture Capital Investment Recommendation (XZ, WZ, JW), pp. 75–82.
RecSysRecSys-2015-ZhaoZFT #e-commerce #personalisation
E-commerce Recommendation with Personalized Promotion (QZ, YZ, DF, FT), pp. 219–226.
RecSysRecSys-2015-Zoeter
Recommendations in Travel (OZ), p. 234.
SEKESEKE-2015-Colace0LLYC #adaptation #perspective
An Adaptive Contextual Recommender System: a Slow Intelligence Perspective (FC, LG, SL, ML, DY, SKC), pp. 64–71.
SEKESEKE-2015-LiuXC #learning
Context-aware Recommendation System with Anonymous User Profile Learning (YL, YX, MC), pp. 93–98.
SEKESEKE-2015-RamosCRSAP #analysis #architecture
Recommendation in the Digital TV Domain: an Architecture based on Textual Description Analysis (FBAR, AAMC, RRdS, GS, HOdA, AP), pp. 99–104.
SEKESEKE-2015-ZhaoSCZ #crowdsourcing #developer #effectiveness #towards
Towards Effective Developer Recommendation in Software Crowdsourcing (SZ, BS, YC, HZ), pp. 326–329.
SIGIRSIGIR-2015-ChengS #music #named
VenueMusic: A Venue-Aware Music Recommender System (ZC, JS), pp. 1029–1030.
SIGIRSIGIR-2015-ChenLZLS #approximate #matrix #named #scalability
WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation (CC, DL, YZ, QL, LS), pp. 303–312.
SIGIRSIGIR-2015-GuoL #automation #generative #graph #music
Automatic Feature Generation on Heterogeneous Graph for Music Recommendation (CG, XL), pp. 807–810.
SIGIRSIGIR-2015-GuyLDB #case study #enterprise #social
Islands in the Stream: A Study of Item Recommendation within an Enterprise Social Stream (IG, RL, TD, EB), pp. 665–674.
SIGIRSIGIR-2015-HaraSKF #using
Reducing Hubness: A Cause of Vulnerability in Recommender Systems (KH, IS, KK, KF), pp. 815–818.
SIGIRSIGIR-2015-KneesS #music #overview #perspective #retrieval #tutorial
Music Retrieval and Recommendation: A Tutorial Overview (PK, MS), pp. 1133–1136.
SIGIRSIGIR-2015-LiCLPK #named #ranking
Rank-GeoFM: A Ranking based Geographical Factorization Method for Point of Interest Recommendation (XL, GC, XL, TANP, SK), pp. 433–442.
SIGIRSIGIR-2015-LuZZW #personalisation
Exploiting User and Business Attributes for Personalized Business Recommendation (KL, YZ, LZ, SW), pp. 891–894.
SIGIRSIGIR-2015-McAuleyTSH
Image-Based Recommendations on Styles and Substitutes (JJM, CT, QS, AvdH), pp. 43–52.
SIGIRSIGIR-2015-ReinandaMR #aspect-oriented #mining #ranking
Mining, Ranking and Recommending Entity Aspects (RR, EM, MdR), pp. 263–272.
SIGIRSIGIR-2015-SchedlH #music
Tailoring Music Recommendations to Users by Considering Diversity, Mainstreaminess, and Novelty (MS, DH), pp. 947–950.
SIGIRSIGIR-2015-ShokouhiG #query #ranking
From Queries to Cards: Re-ranking Proactive Card Recommendations Based on Reactive Search History (MS, QG), pp. 695–704.
SIGIRSIGIR-2015-SunXZLGX #multi #personalisation
Multi-source Information Fusion for Personalized Restaurant Recommendation (JS, YX, YZ, JL, CG, HX), pp. 983–986.
SIGIRSIGIR-2015-TangJLZL #personalisation
Personalized Recommendation via Parameter-Free Contextual Bandits (LT, YJ, LL, CZ, TL), pp. 323–332.
SIGIRSIGIR-2015-VolkovsY #effectiveness #feedback #modelling
Effective Latent Models for Binary Feedback in Recommender Systems (MV, GWY), pp. 313–322.
SIGIRSIGIR-2015-WangGLXWC #learning #representation
Learning Hierarchical Representation Model for NextBasket Recommendation (PW, JG, YL, JX, SW, XC), pp. 403–412.
SIGIRSIGIR-2015-WangSWZSLL #cumulative
An Entity Class-Dependent Discriminative Mixture Model for Cumulative Citation Recommendation (JW, DS, QW, ZZ, LS, LL, CYL), pp. 635–644.
SIGIRSIGIR-2015-XuWW #collaboration #personalisation #ranking #semantics
Personalized Semantic Ranking for Collaborative Recommendation (SX, SW, LW), pp. 971–974.
SIGIRSIGIR-2015-YaoSQWSH #social #using
Context-aware Point-of-Interest Recommendation Using Tensor Factorization with Social Regularization (LY, QZS, YQ, XW, AS, QH), pp. 1007–1010.
SIGIRSIGIR-2015-ZhangC #category theory #correlation #named #social
GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for Point-of-Interest Recommendations (JDZ, CYC), pp. 443–452.
SIGIRSIGIR-2015-ZhangCQZL #multi #personalisation #similarity
When Personalization Meets Conformity: Collective Similarity based Multi-Domain Recommendation (XZ, JC, SQ, ZZ, HL), pp. 1019–1022.
ASEASE-2015-NguyenPVN #api #markov #mobile
Recommending API Usages for Mobile Apps with Hidden Markov Model (TTN, HVP, PMV, TTN), pp. 795–800.
ASEASE-2015-ZimmermanR #automation #framework
An Automated Framework for Recommending Program Elements to Novices (N) (KZ, CRR), pp. 283–288.
ESEC-FSEESEC-FSE-2015-LinPXZZ #interactive
Clone-based and interactive recommendation for modifying pasted code (YL, XP, ZX, DZ, WZ), pp. 520–531.
ESEC-FSEESEC-FSE-2015-PhamSS #automation #developer
Automatically recommending test code examples to inexperienced developers (RP, YS, KS), pp. 890–893.
ICSEICSE-v2-2015-Beyer #api #developer #mobile #named
DIETs: Recommender Systems for Mobile API Developers (SB), pp. 859–862.
SACSAC-2015-AissiGSS #evaluation #framework #personalisation #query
Personalized recommendation of SOLAP queries: theoretical framework and experimental evaluation (SA, MSG, TS, LBS), pp. 1008–1014.
SACSAC-2015-AliK #approach #effectiveness
An effective approach to group recommendation based on belief propagation (IA, SWK), pp. 1148–1153.
SACSAC-2015-BurityE #approach
A quantitative, evidence-based approach for recommending software modules (TB, GEdS), pp. 1449–1456.
SACSAC-2015-CamaraHJJ #graph #modelling #persuasion #social #using
Using graph-based models in a persuasive social recommendation system (JPC, SH, JJ, VJ), pp. 189–194.
SACSAC-2015-CapelleMHFV #hybrid #semantics
Bing-SF-IDF+: a hybrid semantics-driven news recommender (MC, MM, FH, FF, DV), pp. 732–739.
SACSAC-2015-Chaudhary #experience
Experience in item based recommender system (AC), pp. 1112–1114.
SACSAC-2015-DominguesSBMPR #metadata #multi #personalisation #ranking
Applying multi-view based metadata in personalized ranking for recommender systems (MAD, CVS, FMMB, MGM, MGCP, SOR), pp. 1105–1107.
SACSAC-2015-HsiehNKC #approximate #performance #query
Efficient approximate thompson sampling for search query recommendation (CCH, JN, TK, JC), pp. 740–746.
SACSAC-2015-LommatzschA #realtime
Real-time recommendations for user-item streams (AL, SA), pp. 1039–1046.
SACSAC-2015-MatuszykVSJG #incremental #matrix
Forgetting methods for incremental matrix factorization in recommender systems (PM, JV, MS, AMJ, JG), pp. 947–953.
SACSAC-2015-PaivaBSIJ #behaviour #learning #student
Improving pedagogical recommendations by classifying students according to their interactional behavior in a gamified learning environment (ROAP, IIB, APdS, SI, PAJ), pp. 233–238.
SACSAC-2015-RodriguesJD #using
Accelerating recommender systems using GPUs (AVR, AJ, ID), pp. 879–884.
SACSAC-2015-Zheng #algorithm
Improve general contextual slim recommendation algorithms by factorizing contexts (YZ), pp. 929–930.
ECSAECSA-2014-HeroldM #architecture #consistency #refactoring
Recommending Refactorings to Re-establish Architectural Consistency (SH, MM), pp. 390–397.
HTHT-2014-KowaldLT #benchmark #framework #metric #named #standard #towards
TagRec: towards a standardized tag recommender benchmarking framework (DK, EL, CT), pp. 305–307.
HTHT-2014-LacicKT #named #online #scalability #social
SocRecM: a scalable social recommender engine for online marketplaces (EL, DK, CT), pp. 308–310.
HTHT-2014-QuerciaSA
The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city (DQ, RS, LMA), pp. 116–125.
HTHT-2014-TrevisiolCB #personalisation
Buon appetito: recommending personalized menus (MT, LC, RABY), pp. 327–329.
JCDLJCDL-2014-AkbarSFF #deduction #education #library #network #social
Recommendation based on Deduced Social Networks in an educational digital library (MA, CAS, WF, EAF), pp. 29–38.
JCDLJCDL-2014-HuangWMG #named
RefSeer: A citation recommendation system (WH, ZW, PM, CLG), pp. 371–374.
JCDLJCDL-2014-LiuYGSG #approach #mining #network
Full-text based context-rich heterogeneous network mining approach for citation recommendation (XL, YY, CG, YS, LG), pp. 361–370.
JCDLJCDL-2014-OtegiAC #personalisation #rank
Personalised PageRank for making recommendations in digital cultural heritage collections (AO, EA, PDC), pp. 49–52.
VLDBVLDB-2014-DaiQJWW #personalisation
A Personalized Recommendation System for NetEase Dating Site (CD, FQ, WJ, ZW, ZW), pp. 1760–1765.
VLDBVLDB-2014-GuptaSGGZLL #detection #graph #online #realtime #scalability #twitter
Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs (PG, VS, AG, SG, VZ, QL, JL), pp. 1379–1380.
VLDBVLDB-2014-LuCLL
Show Me the Money: Dynamic Recommendations for Revenue Maximization (WL, SC, KL, LVSL), pp. 1785–1796.
VLDBVLDB-2014-WangLHCSWLT #named #realtime
R3: A Real-Time Route Recommendation System (HW, GL, HH, SC, BS, HW, WSL, KLT), pp. 1549–1552.
VLDBVLDB-2014-ZhangJSR #big data #using
Getting Your Big Data Priorities Straight: A Demonstration of Priority-based QoS using Social-network-driven Stock Recommendation (RZ, RJ, PS, LR), pp. 1665–1668.
EDMEDM-2014-CarballoA #case study #composition #education
Singular Value Decomposition in Education: a case study on recommending courses (FC, CA), pp. 417–418.
EDMEDM-2014-YangPHR #concurrent #online #thread
Forum Thread Recommendation for Massive Open Online Courses (DY, MP, IKH, CPR), pp. 257–260.
SANERCSMR-WCRE-2014-GeSDM #how #query
How the Sando search tool recommends queries (XG, DCS, KD, ERMH), pp. 425–428.
SANERCSMR-WCRE-2014-KashiwabaraOIHYI #mining #using
Recommending verbs for rename method using association rule mining (YK, YO, TI, YH, TY, KI), pp. 323–327.
SANERCSMR-WCRE-2014-RahmanYR #exception #fault #ide #programming #towards
Towards a context-aware IDE-based meta search engine for recommendation about programming errors and exceptions (MMR, SY, CKR), pp. 194–203.
ICPCICPC-2014-GhafariGMT #mining #testing
Mining unit tests for code recommendation (MG, CG, AM, GT), pp. 142–145.
ICPCICPC-2014-SilvaTV #automation #refactoring
Recommending automated extract method refactorings (DS, RT, MTV), pp. 146–156.
ICPCICPC-2014-SteidlE #fault #maintenance #refactoring
Prioritizing maintainability defects based on refactoring recommendations (DS, SE), pp. 168–176.
ICSMEICSME-2014-PonzanelliBPOL #named #self
Prompter: A Self-Confident Recommender System (LP, GB, MDP, RO, ML), pp. 577–580.
ICSMEICSME-2014-WangG #design #refactoring #using
Recommending Clones for Refactoring Using Design, Context, and History (WW, MWG), pp. 331–340.
ICSMEICSME-2014-WangLVS #named
EnTagRec: An Enhanced Tag Recommendation System for Software Information Sites (SW, DL, BV, AS), pp. 291–300.
ICSMEICSME-2014-YuWYL #git
Reviewer Recommender of Pull-Requests in GitHub (YY, HW, GY, CXL), pp. 609–612.
SCAMSCAM-2014-RahmanR14a #exception #on the #using
On the Use of Context in Recommending Exception Handling Code Examples (MMR, CKR), pp. 285–294.
CoGCIG-2014-KimK #game studies #learning #realtime
Learning to recommend game contents for real-time strategy gamers (HTK, KJK), pp. 1–8.
CHICHI-2014-HongA #modelling #performance #predict #user interface #using
Novice use of a predictive human performance modeling tool to produce UI recommendations (KWH, RSA), pp. 2251–2254.
CHICHI-2014-LoeppHZ #collaboration #elicitation
Choice-based preference elicitation for collaborative filtering recommender systems (BL, TH, JZ), pp. 3085–3094.
CHICHI-2014-NorvalAH #network #social #what
What’s on your mind?: investigating recommendations for inclusive social networking and older adults (CN, JLA, VLH), pp. 3923–3932.
HCIHCI-AIMT-2014-LackeyBM #communication #interactive #requirements
Recommended Considerations for Human-Robot Interaction Communication Requirements (SJL, DJB, SGM), pp. 663–674.
HCIHCI-AS-2014-Lopez-OrnelasAZ
A Geo-collaborative Recommendation Tool to Help Urban Mobility (ÉLO, RAM, JSZH), pp. 466–472.
HCIHCI-AS-2014-ZiesemerMS #exclamation #gamification
Just Rate It! Gamification as Part of Recommendation (AdCAZ, LM, MSS), pp. 786–796.
HCIHCI-TMT-2014-SousaB #statistics
Recommender System to Support Chart Constructions with Statistical Data (TAFdS, SDJB), pp. 631–642.
HCIHIMI-AS-2014-AsikisL #research
Operations Research and Recommender Systems (TA, GL), pp. 579–589.
HCIHIMI-DE-2014-GombosK #dataset #query
SPARQL Query Writing with Recommendations Based on Datasets (GG, AK), pp. 310–319.
HCILCT-TRE-2014-BraunhoferEGR #learning #mobile
Context Dependent Preference Acquisition with Personality-Based Active Learning in Mobile Recommender Systems (MB, ME, MG, FR), pp. 105–116.
ICEISICEIS-v1-2014-TitoRSFTS #information management #named
RecRoute — A Bus Route Recommendation System Based on Users’ Contextual Information (AdOT, ARRR, LMdS, LAVF, PRT, ACS), pp. 357–366.
ICEISICEIS-v2-2014-BorattoC #clustering #collaboration #using
Using Collaborative Filtering to Overcome the Curse of Dimensionality when Clustering Users in a Group Recommender System (LB, SC), pp. 564–572.
ICEISICEIS-v2-2014-PanfilenkoEML #impact analysis #independence #model transformation #platform #requirements
Recommendations for Impact Analysis of Model Transformations — From the Requirements Model to the Platform-independent Model (DVP, AE, CM, PL), pp. 428–434.
CIKMCIKM-2014-AllahoL #latency #online
Increasing the Responsiveness of Recommended Expert Collaborators for Online Open Projects (MYA, WCL), pp. 749–758.
CIKMCIKM-2014-DahimeneCM #named #network #social
RecLand: A Recommender System for Social Networks (RD, CC, CdM), pp. 2063–2065.
CIKMCIKM-2014-DeveaudAMMO #named #personalisation
SmartVenues: Recommending Popular and Personalised Venues in a City (RD, MDA, JM, CM, IO), pp. 2078–2080.
CIKMCIKM-2014-LiuWSM
Exploiting Geographical Neighborhood Characteristics for Location Recommendation (YL, WW, AS, CM), pp. 739–748.
CIKMCIKM-2014-LiuYGS #feedback #graph #pseudo #ranking
Meta-Path-Based Ranking with Pseudo Relevance Feedback on Heterogeneous Graph for Citation Recommendation (XL, YY, CG, YS), pp. 121–130.
CIKMCIKM-2014-MahdabiC #mining #network #retrieval
Query-Driven Mining of Citation Networks for Patent Citation Retrieval and Recommendation (PM, FC), pp. 1659–1668.
CIKMCIKM-2014-MaLG #collaboration #community #trust
Improving Recommendation Accuracy by Combining Trust Communities and Collaborative Filtering (XM, HL, ZG), pp. 1951–1954.
CIKMCIKM-2014-NtoutsiSRK #clustering #difference #quote
“Strength Lies in Differences”: Diversifying Friends for Recommendations through Subspace Clustering (EN, KS, KR, HPK), pp. 729–738.
CIKMCIKM-2014-ShiKBLH #learning #named
CARS2: Learning Context-aware Representations for Context-aware Recommendations (YS, AK, LB, ML, AH), pp. 291–300.
CIKMCIKM-2014-VlachosFMKV #clustering #quality
Improving Co-Cluster Quality with Application to Product Recommendations (MV, FF, CM, ATK, VGV), pp. 679–688.
CIKMCIKM-2014-WangGL #modelling #personalisation #transaction
Modeling Retail Transaction Data for Personalized Shopping Recommendation (PW, JG, YL), pp. 1979–1982.
CIKMCIKM-2014-WangJDY #adaptation #social
User Interests Imbalance Exploration in Social Recommendation: A Fitness Adaptation (TW, XJ, XD, XY), pp. 281–290.
CIKMCIKM-2014-WangPX #collaboration #matrix #named
HGMF: Hierarchical Group Matrix Factorization for Collaborative Recommendation (XW, WP, CX), pp. 769–778.
CIKMCIKM-2014-YangSR
Constrained Question Recommendation in MOOCs via Submodularity (DY, JS, CPR), pp. 1987–1990.
CIKMCIKM-2014-YuanCS #graph
Graph-based Point-of-interest Recommendation with Geographical and Temporal Influences (QY, GC, AS), pp. 659–668.
CIKMCIKM-2014-ZhengMB
Deviation-Based Contextual SLIM Recommenders (YZ, BM, RDB), pp. 271–280.
CIKMCIKM-2014-ZhongPXYM #adaptation #collaboration #learning
Adaptive Pairwise Preference Learning for Collaborative Recommendation with Implicit Feedbacks (HZ, WP, CX, ZY, ZM), pp. 1999–2002.
ECIRECIR-2014-BreussT #interactive #learning #social #social media
Learning from User Interactions for Recommending Content in Social Media (MB, MT), pp. 598–604.
ECIRECIR-2014-BrilhanteMNPR #named
TripBuilder: A Tool for Recommending Sightseeing Tours (IRB, JAFdM, FMN, RP, CR), pp. 771–774.
ECIRECIR-2014-HofmannSBR #bias #evaluation
Effects of Position Bias on Click-Based Recommender Evaluation (KH, AS, AB, MdR), pp. 624–630.
ECIRECIR-2014-Lommatzsch #realtime #using
Real-Time News Recommendation Using Context-Aware Ensembles (AL), pp. 51–62.
ECIRECIR-2014-RikitianskiiHC #personalisation
A Personalised Recommendation System for Context-Aware Suggestions (AR, MH, FC), pp. 63–74.
ECIRECIR-2014-ZhangZWS #network
Content + Attributes: A Latent Factor Model for Recommending Scientific Papers in Heterogeneous Academic Networks (CZ, XZ, KW, JS), pp. 39–50.
ICPRICPR-2014-DominguesMMSR #information management #topic #using
Using Contextual Information from Topic Hierarchies to Improve Context-Aware Recommender Systems (MAD, MGM, RMM, CVS, SOR), pp. 3606–3611.
ICPRICPR-2014-ManzatoDMR #feedback #personalisation #ranking #topic
Improving Personalized Ranking in Recommender Systems with Topic Hierarchies and Implicit Feedback (MGM, MAD, RMM, SOR), pp. 3696–3701.
KDDKDD-2014-AmatriainM #problem #tutorial
The recommender problem revisited: morning tutorial (XA, BM), p. 1971.
KDDKDD-2014-DiaoQWSJW #aspect-oriented #modelling #sentiment
Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) (QD, MQ, CYW, AJS, JJ, CW), pp. 193–202.
KDDKDD-2014-JagadeeshPBDS #image #scalability #visual notation
Large scale visual recommendations from street fashion images (VJ, RP, AB, WD, NS), pp. 1925–1934.
KDDKDD-2014-LeeLTS #modelling #scalability
Modeling impression discounting in large-scale recommender systems (PL, LVSL, MT, SS), pp. 1837–1846.
KDDKDD-2014-LianZXSCR #matrix #modelling #named
GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation (DL, CZ, XX, GS, EC, YR), pp. 831–840.
KDDKDD-2014-LiL #quality
Matching users and items across domains to improve the recommendation quality (CYL, SDL), pp. 801–810.
KDDKDD-2014-LuIBL #social
Optimal recommendations under attraction, aversion, and social influence (WL, SI, SB, LVSL), pp. 811–820.
KDDKDD-2014-QuZLLX #effectiveness
A cost-effective recommender system for taxi drivers (MQ, HZ, JL, GL, HX), pp. 45–54.
KDDKDD-2014-RenLYKGWH #clustering #effectiveness #named
ClusCite: effective citation recommendation by information network-based clustering (XR, JL, XY, UK, QG, LW, JH), pp. 821–830.
KDDKDD-2014-TangTL #future of #social #social media
Recommendation in social media: recent advances and new frontiers (JT, JT, HL), p. 1977.
KDDKDD-2014-YuanCL #generative #named
COM: a generative model for group recommendation (QY, GC, CYL), pp. 163–172.
KDDKDD-2014-ZhaoGHJWL #microblog #what
We know what you want to buy: a demographic-based system for product recommendation on microblogs (WXZ, YG, YH, HJ, YW, XL), pp. 1935–1944.
KDDKDD-2014-ZhuXGC #mobile #privacy #security
Mobile app recommendations with security and privacy awareness (HZ, HX, YG, EC), pp. 951–960.
KDIRKDIR-2014-FukumotoSSM #collaboration
Incorporating Guest Preferences into Collaborative Filtering for Hotel Recommendation (FF, HS, YS, SM), pp. 22–30.
KDIRKDIR-2014-HasnaMDP #sentiment
Sentiment Polarity Extension for Context-Sensitive Recommender Systems (OLH, FCM, MD, RP), pp. 126–137.
KDIRKDIR-2014-MeguebliKDP14a #personalisation
Stories Around You — A Two-Stage Personalized News Recommendation (YM, MK, BLD, FP), pp. 473–479.
KDIRKDIR-2014-SaiaBC #modelling #semantics
Semantic Coherence-based User Profile Modeling in the Recommender Systems Context (RS, LB, SC), pp. 154–161.
KDIRKDIR-2014-TasciC
A Media Tracking and News Recommendation System (ST, IC), pp. 53–60.
KDIRKDIR-2014-UtkuA #mobile
A Mobile Location-Aware Recommendation System (SU, CEA), pp. 176–183.
KEODKEOD-2014-AliE #collaboration #semantics
Semantic-based Collaborative Filtering for Enhancing Recommendation (GA, AE), pp. 176–185.
KEODKEOD-2014-TarakciC #using
Using Hypergraph-based User Profile in a Recommendation System (HT, NKC), pp. 27–35.
KMISKMIS-2014-WangABN #semantics #towards
Towards a Recommender System from Semantic Traces for Decision Aid (NW, MHA, JPAB, EN), pp. 274–279.
MLDMMLDM-2014-DzubaB #mining #music
Mining Users Playbacks History for Music Recommendations (AD, DB), pp. 422–430.
RecSysRecSys-2014-AdamopoulosT14a #bias #collaboration #on the #probability
On over-specialization and concentration bias of recommendations: probabilistic neighborhood selection in collaborative filtering systems (PA, AT), pp. 153–160.
RecSysRecSys-2014-Aiolli #feedback #optimisation
Convex AUC optimization for top-N recommendation with implicit feedback (FA), pp. 293–296.
RecSysRecSys-2014-Amatriain #problem #revisited
The recommender problem revisited (XA), pp. 397–398.
RecSysRecSys-2014-BachrachFGKKNP #using
Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces (YB, YF, RGB, LK, NK, NN, UP), pp. 257–264.
RecSysRecSys-2014-BadenesBCGHMNPSSXYZ #automation #people #social #social media
System U: automatically deriving personality traits from social media for people recommendation (HB, MNB, JC, LG, EMH, JM, JWN, AP, JS, BAS, YX, HY, MXZ), pp. 373–374.
RecSysRecSys-2014-Ben-ShimonTFH #as a service #configuration management #monitoring
Configuring and monitoring recommender system as a service (DBS, AT, MF, JH), pp. 363–364.
RecSysRecSys-2014-BhagatWIT #learning #matrix #using
Recommending with an agenda: active learning of private attributes using matrix factorization (SB, UW, SI, NT), pp. 65–72.
RecSysRecSys-2014-Braunhofer
Hybridisation techniques for cold-starting context-aware recommender systems (MB), pp. 405–408.
RecSysRecSys-2014-BraunhoferCR #hybrid
Switching hybrid for cold-starting context-aware recommender systems (MB, VC, FR), pp. 349–352.
RecSysRecSys-2014-CantadorC #tutorial
Tutorial on cross-domain recommender systems (IC, PC), pp. 401–402.
RecSysRecSys-2014-Christakopoulou #independence
Moving beyond linearity and independence in top-N recommender systems (EC), pp. 409–412.
RecSysRecSys-2014-CremonesiQ #question
Cross-domain recommendations without overlapping data: myth or reality? (PC, MQ), pp. 297–300.
RecSysRecSys-2014-DalyBKM #multi
Multi-criteria journey aware housing recommender system (EMD, AB, AK, RM), pp. 325–328.
RecSysRecSys-2014-DeryKRS #elicitation
Preference elicitation for narrowing the recommended list for groups (LND, MK, LR, BS), pp. 333–336.
RecSysRecSys-2014-EkstrandHWK #algorithm #difference
User perception of differences in recommender algorithms (MDE, FMH, MCW, JAK), pp. 161–168.
RecSysRecSys-2014-GaoTL #network #personalisation #social
Personalized location recommendation on location-based social networks (HG, JT, HL), pp. 399–400.
RecSysRecSys-2014-GarcinFDABH #evaluation #online
Offline and online evaluation of news recommender systems at swissinfo.ch (FG, BF, OD, AA, CB, AH), pp. 169–176.
RecSysRecSys-2014-GueyeAN #algorithm
A parameter-free algorithm for an optimized tag recommendation list size (MG, TA, HN), pp. 233–240.
RecSysRecSys-2014-GuyG #social #tutorial
Social recommender system tutorial (IG, WG), pp. 403–404.
RecSysRecSys-2014-HaririMB #adaptation #interactive
Context adaptation in interactive recommender systems (NH, BM, RDB), pp. 41–48.
RecSysRecSys-2014-HarmanOAG #trust
Dynamics of human trust in recommender systems (JLH, JO, TFA, CG), pp. 305–308.
RecSysRecSys-2014-JannachF #data mining #mining #modelling #process
Recommendation-based modeling support for data mining processes (DJ, SF), pp. 337–340.
RecSysRecSys-2014-KellerR #e-commerce #framework #named #platform
Cosibon: an E-commerce like platform enabling bricks-and-mortar stores to use sophisticated product recommender systems (TK, MR), pp. 367–368.
RecSysRecSys-2014-KluverK #behaviour
Evaluating recommender behavior for new users (DK, JAK), pp. 121–128.
RecSysRecSys-2014-KrishnanPFG #bias #learning #social
A methodology for learning, analyzing, and mitigating social influence bias in recommender systems (SK, JP, MJF, KG), pp. 137–144.
RecSysRecSys-2014-LingLK #approach
Ratings meet reviews, a combined approach to recommend (GL, MRL, IK), pp. 105–112.
RecSysRecSys-2014-Liu0L
Recommending user generated item lists (YL, MX, LVSL), pp. 185–192.
RecSysRecSys-2014-LiuA #framework #towards
Towards a dynamic top-N recommendation framework (XL, KA), pp. 217–224.
RecSysRecSys-2014-LoniS #library #named
WrapRec: an easy extension of recommender system libraries (BL, AS), pp. 377–378.
RecSysRecSys-2014-Mayeku #personalisation
Enhancing personalization and learner engagement through context-aware recommendation in TEL (BM), pp. 413–415.
RecSysRecSys-2014-Nguyen #lifecycle
Improving recommender systems: user roles and lifecycles (TTN), pp. 417–420.
RecSysRecSys-2014-NoiaORTS #analysis #towards
An analysis of users’ propensity toward diversity in recommendations (TDN, VCO, JR, PT, EDS), pp. 285–288.
RecSysRecSys-2014-PalovicsBKKF #online
Exploiting temporal influence in online recommendation (RP, AAB, LK, TK, EF), pp. 273–280.
RecSysRecSys-2014-PedroK #collaboration
Question recommendation for collaborative question answering systems with RankSLDA (JSP, AK), pp. 193–200.
RecSysRecSys-2014-PeraN14a #automation
Automating readers’ advisory to make book recommendations for K-12 readers (MSP, YKN), pp. 9–16.
RecSysRecSys-2014-SaidB #benchmark #comparative #evaluation #framework #metric
Comparative recommender system evaluation: benchmarking recommendation frameworks (AS, AB), pp. 129–136.
RecSysRecSys-2014-SaidB14a #evaluation #named #tool support
Rival: a toolkit to foster reproducibility in recommender system evaluation (AS, AB), pp. 371–372.
RecSysRecSys-2014-SaidDLT #challenge
Recommender systems challenge 2014 (AS, SD, BL, DT), pp. 387–388.
RecSysRecSys-2014-SaveskiM #learning
Item cold-start recommendations: learning local collective embeddings (MS, AM), pp. 89–96.
RecSysRecSys-2014-SedhainSBXC #collaboration #social
Social collaborative filtering for cold-start recommendations (SS, SS, DB, LX, JC), pp. 345–348.
RecSysRecSys-2014-SeminarioW
Attacking item-based recommender systems with power items (CES, DCW), pp. 57–64.
RecSysRecSys-2014-SuiB #feedback #online #rank
Clinical online recommendation with subgroup rank feedback (YS, JWB), pp. 289–292.
RecSysRecSys-2014-SureshRE #mining
Aspect-based opinion mining and recommendationsystem for restaurant reviews (VS, SR, ME), pp. 361–362.
RecSysRecSys-2014-TangJLL #personalisation
Ensemble contextual bandits for personalized recommendation (LT, YJ, LL, TL), pp. 73–80.
RecSysRecSys-2014-TrevisiolASJ #graph
Cold-start news recommendation with domain-dependent browse graph (MT, LMA, RS, AJ), pp. 81–88.
RecSysRecSys-2014-Vahedian #hybrid #network
Weighted hybrid recommendation for heterogeneous networks (FV), pp. 429–432.
RecSysRecSys-2014-VanchinathanNBK #process
Explore-exploit in top-N recommender systems via Gaussian processes (HPV, IN, FDB, AK), pp. 225–232.
RecSysRecSys-2014-VargasBKC
Coverage, redundancy and size-awareness in genre diversity for recommender systems (SV, LB, AK, PC), pp. 209–216.
RecSysRecSys-2014-VargasC
Improving sales diversity by recommending users to items (SV, PC), pp. 145–152.
RecSysRecSys-2014-WaldnerV #exclamation #game studies #timeline #twitter
Emphasize, don’t filter!: displaying recommendations in Twitter timelines (WW, JV), pp. 313–316.
RecSysRecSys-2014-XuPA #predict #ranking
Controlled experimentation in recommendations, ranking & response prediction (YX, RP, JA), p. 389.
RecSysRecSys-2014-YangAR #constraints #online
Question recommendation with constraints for massive open online courses (DY, DA, CPR), pp. 49–56.
RecSysRecSys-2014-Zhang
Browser-oriented universal cross-site recommendation and explanation based on user browsing logs (YZ), pp. 433–436.
RecSysRecSys-2014-Zheng #algorithm #similarity
Deviation-based and similarity-based contextual SLIM recommendation algorithms (YZ), pp. 437–440.
RecSysRecSys-2014-ZhengMB #algorithm #named
CSLIM: contextual SLIM recommendation algorithms (YZ, BM, RDB), pp. 301–304.
SEKESEKE-2014-TianWHZG #feedback #using #web #web service
Cold-Start Web Service Recommendation Using Implicit Feedback (GT, JW, KH, WZ, PG), pp. 371–376.
SIGIRSIGIR-2014-ChengSM #adaptation #music #named #personalisation #social
Just-for-me: an adaptive personalization system for location-aware social music recommendation (ZC, JS, TM), pp. 1267–1268.
SIGIRSIGIR-2014-ChengYWL #behaviour #multi
Group latent factor model for recommendation with multiple user behaviors (JC, TY, JW, HL), pp. 995–998.
SIGIRSIGIR-2014-ChenJZBZSY #category theory
Does product recommendation meet its waterloo in unexplored categories?: no, price comes to help (JC, QJ, SZ, SB, LZ, ZS, YY), pp. 667–676.
SIGIRSIGIR-2014-GrausDTWR #communication #email #enterprise #graph #using
Recipient recommendation in enterprises using communication graphs and email content (DG, DvD, MT, WW, MdR), pp. 1079–1082.
SIGIRSIGIR-2014-Ifada #modelling #personalisation #topic #using
A tag-based personalized item recommendation system using tensor modeling and topic model approaches (NI), p. 1280.
SIGIRSIGIR-2014-LinSKC #modelling
New and improved: modeling versions to improve app recommendation (JL, KS, MYK, TSC), pp. 647–656.
SIGIRSIGIR-2014-LivneGTDA #difference #named #using
CiteSight: supporting contextual citation recommendation using differential search (AL, VG, JT, STD, EA), pp. 807–816.
SIGIRSIGIR-2014-LiWM #social
A revisit to social network-based recommender systems (HL, DW, NM), pp. 1239–1242.
SIGIRSIGIR-2014-LuLMWXW #interactive #microblog #topic
Computing and applying topic-level user interactions in microblog recommendation (XL, PL, HM, SW, AX, BW), pp. 843–846.
SIGIRSIGIR-2014-Ma #on the #social
On measuring social friend interest similarities in recommender systems (HM), pp. 465–474.
SIGIRSIGIR-2014-NguyenKB #process
Gaussian process factorization machines for context-aware recommendations (TVN, AK, LB), pp. 63–72.
SIGIRSIGIR-2014-RonenGKB #community #social #social media
Recommending social media content to community owners (IR, IG, EK, MB), pp. 243–252.
SIGIRSIGIR-2014-SchedlVF #microblog #music
User geospatial context for music recommendation in microblogs (MS, AV, KF), pp. 987–990.
SIGIRSIGIR-2014-SedhaiS #hashtag #twitter
Hashtag recommendation for hyperlinked tweets (SS, AS), pp. 831–834.
SIGIRSIGIR-2014-TangWZ
Cross-language context-aware citation recommendation in scientific articles (XT, XW, XZ), pp. 817–826.
SIGIRSIGIR-2014-Vargas #evaluation #information retrieval
Novelty and diversity enhancement and evaluation in recommender systems and information retrieval (SV), p. 1281.
SIGIRSIGIR-2014-YaoHHZ #modelling #trust
Modeling dual role preferences for trust-aware recommendation (WY, JH, GH, YZ), pp. 975–978.
SIGIRSIGIR-2014-YaoSNAL #internet
Exploring recommendations in internet of things (LY, QZS, AHHN, HA, XL), pp. 855–858.
SIGIRSIGIR-2014-ZhangL0ZLM #analysis #modelling #sentiment
Explicit factor models for explainable recommendation based on phrase-level sentiment analysis (YZ, GL, MZ, YZ, YL, SM), pp. 83–92.
SIGIRSIGIR-2014-ZhangTZX #algorithm
Addressing cold start in recommender systems: a semi-supervised co-training algorithm (MZ, JT, XZ, XX), pp. 73–82.
SIGIRSIGIR-2014-ZhangWRS #performance
Preference preserving hashing for efficient recommendation (ZZ, QW, LR, LS), pp. 183–192.
SIGIRSIGIR-2014-ZhouKWAD #detection
Detection of abnormal profiles on group attacks in recommender systems (WZ, YSK, JW, SA, GD), pp. 955–958.
SIGIRSIGIR-2014-ZhuHLT
Bundle recommendation in ecommerce (TZ, PH, JL, LT), pp. 657–666.
SKYSKY-2014-ExmanN #network #performance #social
Location-based Fast Recommendation Social Network (IE, EN), pp. 55–62.
ASEASE-2014-BavotaPTPOC #refactoring
Recommending refactorings based on team co-maintenance patterns (GB, SP, NT, MDP, RO, GC), pp. 337–342.
ASEASE-2014-MkaouerKBDC #interactive #optimisation #refactoring #using
Recommendation system for software refactoring using innovization and interactive dynamic optimization (MWM, MK, SB, KD, MÓC), pp. 331–336.
SACSAC-2014-ChenCWD #scalability
Instant expert hunting: building an answerer recommender system for a large scale Q&A website (TC, JC, HW, YD), pp. 260–265.
SACSAC-2014-ChenZTWS #modelling
Comparing the staples in latent factor models for recommender systems (CC, LZ, AT, KW, SV), pp. 91–96.
SACSAC-2014-GuoZTBY #empirical #trust
From ratings to trust: an empirical study of implicit trust in recommender systems (GG, JZ, DT, AB, NYS), pp. 248–253.
SACSAC-2014-HongHKK #mobile #music #smarttech
Context-aware music recommendation in mobile smart devices (JH, WSH, JHK, SWK), pp. 1463–1468.
SACSAC-2014-LiuMHHSC #algorithm #hybrid #twitter
A hybrid algorithm for recommendation twitter peers (JNKL, ZM, YXH, YLH, SCKS, VWSC), pp. 644–649.
SACSAC-2014-NgoPLS #image #named #query
Recommend-Me: recommending query regions for image search (TDN, SP, DDL, SS), pp. 913–918.
SACSAC-2014-RolimBCCAPM #approach #multimodal
A recommendation approach for digital TV systems based on multimodal features (RR, FB, AC, GC, HOdA, AP, AFM), pp. 289–291.
SACSAC-2014-ShangHHCK #personalisation #towards
Beyond personalization and anonymity: towards a group-based recommender system (SS, YH, PH, PC, SRK), pp. 266–273.
SACSAC-2014-UnoI #music #named
MALL: a life log based music recommendation system and portable music player (AU, TI), pp. 939–944.
SACSAC-2014-WangMLG #social
Recommendation based on weighted social trusts and item relationships (DW, JM, TL, LG), pp. 254–259.
SACSAC-2014-YangZL #algorithm #debugging #developer #effectiveness #multi
Utilizing a multi-developer network-based developer recommendation algorithm to fix bugs effectively (GY, TZ, BL), pp. 1134–1139.
SACSAC-2014-ZhengBM #empirical
Splitting approaches for context-aware recommendation: an empirical study (YZ, RDB, BM), pp. 274–279.
HTHT-2013-WuCH #using
Using personality to adjust diversity in recommender systems (WW, LC, LH), pp. 225–229.
HTHT-2013-YangZYW #personalisation #sentiment
A sentiment-enhanced personalized location recommendation system (DY, DZ, ZY, ZW), pp. 119–128.
JCDLJCDL-2013-CarageaSMG
Can’t see the forest for the trees?: a citation recommendation system (CC, AS, PM, CLG), pp. 111–114.
JCDLJCDL-2013-SugiyamaK
Exploiting potential citation papers in scholarly paper recommendation (KS, MYK), pp. 153–162.
JCDLJCDL-2013-TuarobPG #automation #metadata #modelling #probability #topic #using
Automatic tag recommendation for metadata annotation using probabilistic topic modeling (ST, LCP, CLG), pp. 239–248.
SIGMODSIGMOD-2013-VartakM #named
CHIC: a combination-based recommendation system (MV, SM), pp. 981–984.
TPDLTPDL-2013-BeelLG #research
Sponsored vs. Organic (Research Paper) Recommendations and the Impact of Labeling (JB, SL, MG), pp. 391–395.
TPDLTPDL-2013-BeelLGN #multi #persistent
Persistence in Recommender Systems: Giving the Same Recommendations to the Same Users Multiple Times (JB, SL, MG, AN), pp. 386–390.
TPDLTPDL-2013-BeelLNG #gender
The Impact of Demographics (Age and Gender) and Other User-Characteristics on Evaluating Recommender Systems (JB, SL, AN, MG), pp. 396–400.
VLDBVLDB-2013-ChenYYC #named #twitter
TeRec: A Temporal Recommender System Over Tweet Stream (CC, HY, JY, BC), pp. 1254–1257.
VLDBVLDB-2013-SarwatAM #database #relational
A RecDB in Action: Recommendation Made Easy in Relational Databases (MS, JLA, MFM), pp. 1242–1245.
ITiCSEITiCSE-WGR-2013-ShumbaFSTFTSABH #women
Cybersecurity, women and minorities: findings and recommendations from a preliminary investigation (RS, KFB, ES, CT, GF, CT, CS, GA, RB, LH), pp. 1–14.
MSRMSR-2013-NaguibNBH #debugging #process #using
Bug report assignee recommendation using activity profiles (HN, NN, BB, DH), pp. 22–30.
MSRMSR-2013-ShokripourAKZ #debugging #why
Why so complicated? simple term filtering and weighting for location-based bug report assignment recommendation (RS, JA, ZMK, SZ), pp. 2–11.
MSRMSR-2013-XiaLWZ
Tag recommendation in software information sites (XX, DL, XW, BZ), pp. 287–296.
WCREWCRE-2013-SalesTMV #dependence #refactoring #set #using
Recommending Move Method refactorings using dependency sets (VS, RT, LFM, MTV), pp. 232–241.
WCREWCRE-2013-ThungLL #automation #library
Automated library recommendation (FT, DL, JLL), pp. 182–191.
WCREWCRE-2013-XiaLWZ #debugging #developer
Accurate developer recommendation for bug resolution (XX, DL, XW, BZ), pp. 72–81.
ICALPICALP-v2-2013-BachrachP #big data #performance #pseudo #sketching #using
Sketching for Big Data Recommender Systems Using Fast Pseudo-random Fingerprints (YB, EP), pp. 459–471.
CSCWCSCW-2013-SaidFJA #algorithm #collaboration #evaluation
User-centric evaluation of a K-furthest neighbor collaborative filtering recommender algorithm (AS, BF, BJJ, SA), pp. 1399–1408.
HCIHCI-AS-2013-BitontoLRR #collaboration #process
Recommendation of Collaborative Activities in E-learning Environments (PDB, ML, TR, VR), pp. 484–492.
HCIHCI-UC-2013-Baguma #design #mobile
Mobile Money Services in Uganda: Design Gaps and Recommendations (RB), pp. 249–258.
HCIHCI-UC-2013-BelliniBNP #network
A Static and Dynamic Recommendations System for Best Practice Networks (PB, IB, PN, MP), pp. 259–268.
HCIHIMI-D-2013-IsogaiN #modelling #motivation #music
Modeling of Music Recommendation Methods to Promote the User’s Singing Motivation — For Next-Generation Japanese Karaoke Systems (SI, MN), pp. 439–448.
HCIHIMI-D-2013-ShigeyoshiTSTIU #empirical #energy #social
Social Experiment on Advisory Recommender System for Energy-Saving (HS, KT, RS, HT, SI, TU), pp. 545–554.
HCIHIMI-LCCB-2013-ShiTS #consistency #nondeterminism #online
Timing and Basis of Online Product Recommendation: The Preference Inconsistency Paradox (AS, CHT, CLS), pp. 531–539.
HCIHIMI-LCCB-2013-WuN #interactive #process
Integrating the Anchoring Process with Preference Stability for Interactive Movie Recommendations (ICW, YFN), pp. 639–648.
HCIOCSC-2013-Popescu13b #problem
Group Recommender Systems as a Voting Problem (GP), pp. 412–421.
ICEISICEIS-v1-2013-Al-ShamriA #collaboration #correlation
Fuzzy-weighted Pearson Correlation Coefficient for Collaborative Recommender Systems (MYHAS, NHAA), pp. 409–414.
ICEISICEIS-v1-2013-Kozmina
Adding Recommendations to OLAP Reporting Tool (NK), pp. 169–176.
ICEISICEIS-v2-2013-DjuanaXLJC #ontology #problem
An Ontology-based Method for Sparsity Problem in Tag Recommendation (ED, YX, YL, AJ, CC), pp. 467–474.
ICEISICEIS-v2-2013-KuCY #approach
Effect of Product Type and Recommendation Approach on Consumers’ Intention to Purchase Recommended Products (YCK, CHC, CSY), pp. 475–480.
ICEISICEIS-v2-2013-PanfilenkoHEL #architecture #model transformation
Model Transformation Recommendations for Service-Oriented Architectures (DVP, KH, BE, EL), pp. 248–256.
ICEISICEIS-v2-2013-SierraCVCV #education #re-engineering
Microworld-type Ethnoeducational Computer Materials to Support the Teaching of Nasa-Yuwe — Recommendations from a Software Engineering Disciplines Viewpoint for Constructing Microworld-type Ethnoeducational Materials Aimed at Supporting Nasa Yuwe Language Teaching (LMS, EASC, JAV, TRC, EMV), pp. 526–531.
ICEISICEIS-v2-2013-ZhangWSP #linked data #network #open data #social
Event Recommendation in Social Networks with Linked Data Enablement (YZ, HW, VSS, VKP), pp. 371–379.
CIKMCIKM-2013-FerenceYL #network #social
Location recommendation for out-of-town users in location-based social networks (GF, MY, WCL), pp. 721–726.
CIKMCIKM-2013-LiuLAM #mining #personalisation
Personalized point-of-interest recommendation by mining users’ preference transition (XL, YL, KA, CM), pp. 733–738.
CIKMCIKM-2013-LiYZ
Scientific articles recommendation (YL, MY, Z(Z), pp. 1147–1156.
CIKMCIKM-2013-ThostVS #query
Query matching for report recommendation (VT, KV, DS), pp. 1391–1400.
CIKMCIKM-2013-ZhaoLHCH #network #social
Community-based user recommendation in uni-directional social networks (GZ, MLL, WH, WC, HH), pp. 189–198.
ECIRECIR-2013-BelemMAG
Exploiting Novelty and Diversity in Tag Recommendation (FB, EFM, JMA, MAG), pp. 380–391.
ECIRECIR-2013-Cleger-TamayoFHT #predict #quality
Being Confident about the Quality of the Predictions in Recommender Systems (SCT, JMFL, JFH, NT), pp. 411–422.
ECIRECIR-2013-McParlaneMW #detection #semantics
Detecting Friday Night Party Photos: Semantics for Tag Recommendation (PJM, YM, IW), pp. 756–759.
ECIRECIR-2013-ZhuGCLN #graph #query
Recommending High Utility Query via Session-Flow Graph (XZ, JG, XC, YL, WN), pp. 642–655.
KDDKDD-2013-ChenHL #multi
Making recommendations from multiple domains (WC, WH, MLL), pp. 892–900.
KDDKDD-2013-KabburNK #modelling #named #similarity
FISM: factored item similarity models for top-N recommender systems (SK, XN, GK), pp. 659–667.
KDDKDD-2013-LiuFYX #learning
Learning geographical preferences for point-of-interest recommendation (BL, YF, ZY, HX), pp. 1043–1051.
KDDKDD-2013-NiemannW #approach #collaboration
A new collaborative filtering approach for increasing the aggregate diversity of recommender systems (KN, MW), pp. 955–963.
KDDKDD-2013-YinLLW #perspective
Silence is also evidence: interpreting dwell time for recommendation from psychological perspective (PY, PL, WCL, MW), pp. 989–997.
KDDKDD-2013-YinSCHC #named
LCARS: a location-content-aware recommender system (HY, YS, BC, ZH, LC), pp. 221–229.
KDDKDD-2013-ZhangWF
Combining latent factor model with location features for event-based group recommendation (WZ, JW, WF), pp. 910–918.
KDIRKDIR-KMIS-2013-BerkaniN #collaboration #learning #semantics
Semantic Collaborative Filtering for Learning Objects Recommendation (LB, ON), pp. 52–63.
KDIRKDIR-KMIS-2013-NartTF #automation #personalisation #using
Personalized Recommendation and Explanation by using Keyphrases Automatically extracted from Scientific Literature (DDN, CT, FF), pp. 96–103.
KDIRKDIR-KMIS-2013-OliveiraOC #process #student
Recommending the Right Activities based on the Needs of each Student (EO, MGdO, PMC), pp. 183–190.
MLDMMLDM-2013-ChungJKL #identification #personalisation
Personalized Expert-Based Recommender System: Training C-SVM for Personalized Expert Identification (YC, HWJ, JK, JHL), pp. 434–441.
RecSysRecSys-2013-Adamopoulos #predict #rating
Beyond rating prediction accuracy: on new perspectives in recommender systems (PA), pp. 459–462.
RecSysRecSys-2013-AdamopoulosT #collaboration #predict #using
Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems (PA, AT), pp. 351–354.
RecSysRecSys-2013-AharonABLABLRS #named #online #persistent #set
OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings (MA, NA, EB, RL, RA, TB, LL, RR, OS), pp. 375–378.
RecSysRecSys-2013-AhnPLL #graph
A heterogeneous graph-based recommendation simulator (YA, SP, SL, SgL), pp. 471–472.
RecSysRecSys-2013-Aiolli #dataset #performance #scalability
Efficient top-n recommendation for very large scale binary rated datasets (FA), pp. 273–280.
RecSysRecSys-2013-AlanaziB #markov #modelling #using
A people-to-people content-based reciprocal recommender using hidden markov models (AA, MB), pp. 303–306.
RecSysRecSys-2013-AzariaHKEWN
Movie recommender system for profit maximization (AA, AH, SK, AE, OW, IN), pp. 121–128.
RecSysRecSys-2013-BabasCT #personalisation #what
You are what you consume: a bayesian method for personalized recommendations (KB, GC, ET), pp. 221–228.
RecSysRecSys-2013-BelemSAG #topic
Topic diversity in tag recommendation (FB, RLTS, JMA, MAG), pp. 141–148.
RecSysRecSys-2013-Ben-Shimon #algorithm
Anytime algorithms for top-N recommenders (DBS), pp. 463–466.
RecSysRecSys-2013-BlancoR #feedback
Acquiring user profiles from implicit feedback in a conversational recommender system (HB, FR), pp. 307–310.
RecSysRecSys-2013-BlankRS #graph #keyword
Leveraging the citation graph to recommend keywords (IB, LR, GS), pp. 359–362.
RecSysRecSys-2013-BugaychenkoD #network #personalisation #social
Musical recommendations and personalization in a social network (DB, AD), pp. 367–370.
RecSysRecSys-2013-ChowJKS #data analysis #difference
Differential data analysis for recommender systems (RC, HJ, BPK, GS), pp. 323–326.
RecSysRecSys-2013-CremonesiGQ
Evaluating top-n recommendations “when the best are gone” (PC, FG, MQ), pp. 339–342.
RecSysRecSys-2013-DoerfelJ #analysis #evaluation
An analysis of tag-recommender evaluation procedures (SD, RJ), pp. 343–346.
RecSysRecSys-2013-DongOSMS #sentiment
Sentimental product recommendation (RD, MPO, MS, KM, BS), pp. 411–414.
RecSysRecSys-2013-Dooms #generative #hybrid #personalisation
Dynamic generation of personalized hybrid recommender systems (SD), pp. 443–446.
RecSysRecSys-2013-DzyaburaT #how
Not by search alone: how recommendations complement search results (DD, AT), pp. 371–374.
RecSysRecSys-2013-Ester #network #social
Recommendation in social networks (ME), pp. 491–492.
RecSysRecSys-2013-GaoTHL #network #social
Exploring temporal effects for location recommendation on location-based social networks (HG, JT, XH, HL), pp. 93–100.
RecSysRecSys-2013-GarcinDF #personalisation
Personalized news recommendation with context trees (FG, CD, BF), pp. 105–112.
RecSysRecSys-2013-GarcinF #framework #personalisation
PEN RecSys: a personalized news recommender systems framework (FG, BF), pp. 469–470.
RecSysRecSys-2013-GraschFR #interactive #named #speech #towards
ReComment: towards critiquing-based recommendation with speech interaction (PG, AF, FR), pp. 157–164.
RecSysRecSys-2013-Guo #similarity #trust
Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems (GG), pp. 451–454.
RecSysRecSys-2013-GuoZTY #e-commerce
Prior ratings: a new information source for recommender systems in e-commerce (GG, JZ, DT, NYS), pp. 383–386.
RecSysRecSys-2013-HammarKN #e-commerce #using
Using maximum coverage to optimize recommendation systems in e-commerce (MH, RK, BJN), pp. 265–272.
RecSysRecSys-2013-HaririMB
Query-driven context aware recommendation (NH, BM, RDB), pp. 9–16.
RecSysRecSys-2013-HuE #modelling #online #social #social media #topic
Spatial topic modeling in online social media for location recommendation (BH, ME), pp. 25–32.
RecSysRecSys-2013-HuY #learning #process
Interview process learning for top-n recommendation (FH, YY), pp. 331–334.
RecSysRecSys-2013-KaminskasRS #hybrid #music #using
Location-aware music recommendation using auto-tagging and hybrid matching (MK, FR, MS), pp. 17–24.
RecSysRecSys-2013-KaratzoglouBS #learning #rank
Learning to rank for recommender systems (AK, LB, YS), pp. 493–494.
RecSysRecSys-2013-KhroufT #hybrid #linked data #open data #using
Hybrid event recommendation using linked data and user diversity (HK, RT), pp. 185–192.
RecSysRecSys-2013-KoenigsteinK #scalability #towards
Towards scalable and accurate item-oriented recommendations (NK, YK), pp. 419–422.
RecSysRecSys-2013-KoenigsteinP #embedded #feature model #matrix
Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection (NK, UP), pp. 129–136.
RecSysRecSys-2013-KrestelS #topic
Recommending patents based on latent topics (RK, PS), pp. 395–398.
RecSysRecSys-2013-LacerdaVZ #interactive
Exploratory and interactive daily deals recommendation (AL, AV, NZ), pp. 439–442.
RecSysRecSys-2013-MouraoRKM #hybrid
Exploiting non-content preference attributes through hybrid recommendation method (FM, LCdR, JAK, WMJ), pp. 177–184.
RecSysRecSys-2013-NewellM #design #evaluation
Design and evaluation of a client-side recommender system (CN, LM), pp. 473–474.
RecSysRecSys-2013-NguyenKWHEWR #experience #rating #user interface
Rating support interfaces to improve user experience and recommender accuracy (TTN, DK, TYW, PMH, MDE, MCW, JR), pp. 149–156.
RecSysRecSys-2013-OstuniNSM #feedback #linked data #open data
Top-N recommendations from implicit feedback leveraging linked open data (VCO, TDN, EDS, RM), pp. 85–92.
RecSysRecSys-2013-PanCCY #personalisation #social
Diffusion-aware personalized social update recommendation (YP, FC, KC, YY), pp. 69–76.
RecSysRecSys-2013-PeraN #personalisation #what
What to read next?: making personalized book recommendations for K-12 users (MSP, YKN), pp. 113–120.
RecSysRecSys-2013-PessemierDM13a
A food recommender for patients in a care facility (TDP, SD, LM), pp. 209–212.
RecSysRecSys-2013-PizzatoB #network #people #social
Beyond friendship: the art, science and applications of recommending people to people in social networks (LAP, AB), pp. 495–496.
RecSysRecSys-2013-PuF #comprehension #matrix #relational
Understanding and improving relational matrix factorization in recommender systems (LP, BF), pp. 41–48.
RecSysRecSys-2013-RonenKZN #collaboration
Selecting content-based features for collaborative filtering recommenders (RR, NK, EZ, NN), pp. 407–410.
RecSysRecSys-2013-RonenKZSYH #named
Sage: recommender engine as a cloud service (RR, NK, EZ, MS, RY, NHW), pp. 475–476.
RecSysRecSys-2013-SaayaRSS #challenge #web
The curated web: a recommendation challenge (ZS, RR, MS, BS), pp. 101–104.
RecSysRecSys-2013-SavirBS
Recommending improved configurations for complex objects with an application in travel planning (AS, RIB, GS), pp. 391–394.
RecSysRecSys-2013-Seminario #collaboration #robust
Accuracy and robustness impacts of power user attacks on collaborative recommender systems (CES), pp. 447–450.
RecSysRecSys-2013-SharmaY #community #learning
Pairwise learning in recommendation: experiments with community recommendation on linkedin (AS, BY), pp. 193–200.
RecSysRecSys-2013-Shi #approach #graph #similarity
Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach (LS), pp. 57–64.
RecSysRecSys-2013-SilbermannBR
Sample selection for MCMC-based recommender systems (TS, IB, SR), pp. 403–406.
RecSysRecSys-2013-Steck #evaluation #predict #ranking
Evaluation of recommendations: rating-prediction and ranking (HS), pp. 213–220.
RecSysRecSys-2013-SuYCY #personalisation #ranking
Set-oriented personalized ranking for diversified top-n recommendation (RS, LY, KC, YY), pp. 415–418.
RecSysRecSys-2013-TaghaviBS
Agent-based computational investing recommender system (MT, KB, ES), pp. 455–458.
RecSysRecSys-2013-TianJ #graph #using
Recommending scientific articles using bi-relational graph-based iterative RWR (GT, LJ), pp. 399–402.
RecSysRecSys-2013-VahabiALBL #orthogonal #query
Orthogonal query recommendation (HV, MA, DL, RABY, ALO), pp. 33–40.
RecSysRecSys-2013-WangHZL #collaboration #multi #on the fly #online
Online multi-task collaborative filtering for on-the-fly recommender systems (JW, SCHH, PZ, ZL), pp. 237–244.
RecSysRecSys-2013-WestonYW #learning #rank #statistics
Learning to rank recommendations with the k-order statistic loss (JW, HY, RJW), pp. 245–248.
RecSysRecSys-2013-WilsonS #collaboration
When power users attack: assessing impacts in collaborative recommender systems (DCW, CES), pp. 427–430.
RecSysRecSys-2013-WuLCHLCH #online #personalisation
Personalized next-song recommendation in online karaokes (XW, QL, EC, LH, JL, CC, GH), pp. 137–140.
RecSysRecSys-2013-XuBATMK
Catch-up TV recommendations: show old favourites and find new ones (MX, SB, SA, ST, AM, IK), pp. 285–294.
RecSysRecSys-2013-YuRSSKGNH #feedback #network
Recommendation in heterogeneous information networks with implicit user feedback (XY, XR, YS, BS, UK, QG, BN, JH), pp. 347–350.
RecSysRecSys-2013-ZhangP #social #social media
Recommending branded products from social media (YZ, MP), pp. 77–84.
RecSysRecSys-2013-ZhangSKH #artificial reality #using
Improving augmented reality using recommender systems (ZZ, SS, SRK, PH), pp. 173–176.
SEKESEKE-2013-DuHCLH #incremental #named #personalisation
ABEY: an Incremental Personalized Method Based on Attribute Entropy for Recommender Systems (XD, TH, ZC, JL, CH), pp. 318–321.
SEKESEKE-2013-WangWTZ #evaluation #named #network #trust
STERS: A System for Service Trustworthiness Evaluation and Recommendation based on the Trust Network (YW, JW, YT, JZ), pp. 322–325.
SIGIRSIGIR-2013-BalogR #classification #cumulative #ranking
Cumulative citation recommendation: classification vs. ranking (KB, HR), pp. 941–944.
SIGIRSIGIR-2013-Belem
Beyond relevance: on novelty and diversity in tag recommendation (FB), p. 1140.
SIGIRSIGIR-2013-ChenHL #modelling
Modeling user’s receptiveness over time for recommendation (WC, WH, MLL), pp. 373–382.
SIGIRSIGIR-2013-ChenHL13a #feedback
Tagcloud-based explanation with feedback for recommender systems (WC, WH, MLL), pp. 945–948.
SIGIRSIGIR-2013-FanLGLC #collaboration
Collaborative factorization for recommender systems (CF, YL, JG, ZL, XC), pp. 949–953.
SIGIRSIGIR-2013-FeildA #query
Task-aware query recommendation (HAF, JA), pp. 83–92.
SIGIRSIGIR-2013-KarkaliPV #realtime
Match the news: a firefox extension for real-time news recommendation (MK, DP, MV), pp. 1117–1118.
SIGIRSIGIR-2013-LinSKC #modelling #twitter
Addressing cold-start in app recommendation: latent user models constructed from twitter followers (JL, KS, MYK, TSC), pp. 283–292.
SIGIRSIGIR-2013-LukeSM #framework
A framework for specific term recommendation systems (TL, PS, PM), pp. 1093–1094.
SIGIRSIGIR-2013-Ma #case study #social
An experimental study on implicit social recommendation (HM), pp. 73–82.
SIGIRSIGIR-2013-McParlaneMJ #on the
On contextual photo tag recommendation (PJM, YM, JMJ), pp. 965–968.
SIGIRSIGIR-2013-RoitmanCME #modelling
Modeling the uniqueness of the user preferences for recommendation systems (HR, DC, YM, IE), pp. 777–780.
SIGIRSIGIR-2013-SappelliVK #personalisation #using
Recommending personalized touristic sights using google places (MS, SV, WK), pp. 781–784.
SIGIRSIGIR-2013-SchallerHE #distributed #visitor
RecSys for distributed events: investigating the influence of recommendations on visitor plans (RS, MH, DE), pp. 953–956.
SIGIRSIGIR-2013-SchedlS #hybrid #music #retrieval
Hybrid retrieval approaches to geospatial music recommendation (MS, DS), pp. 793–796.
SIGIRSIGIR-2013-ShenWYC #multi
Multimedia recommendation: technology and techniques (JS, MW, SY, PC), p. 1131.
SIGIRSIGIR-2013-ShouML00H
Competence-based song recommendation (LS, KM, XL, KC, GC, TH), pp. 423–432.
SIGIRSIGIR-2013-SonKP #analysis #locality #semantics
A location-based news article recommendation with explicit localized semantic analysis (JWS, AYK, SBP), pp. 293–302.
SIGIRSIGIR-2013-Wang0 #e-commerce
Opportunity model for e-commerce recommendation: right product; right time (JW, YZ), pp. 303–312.
SIGIRSIGIR-2013-WanLGFC #social #social media
Informational friend recommendation in social media (SW, YL, JG, CF, XC), pp. 1045–1048.
SIGIRSIGIR-2013-YuanCMSM
Time-aware point-of-interest recommendation (QY, GC, ZM, AS, NMT), pp. 363–372.
SKYSKY-2013-ExmanK #anti #network #social
An Anti-Turing Test: Social Network Friends’ Recommendations (IE, AK), pp. 55–61.
SKYSKY-2013-Gomes #how #ontology #representation #using
Representing Knowledge using Ontologies: How Search, Browse and Recommendation Can Be Performed (PG), pp. 1–3.
MODELSMoDELS-2013-KuschkeMR #modelling #process
Recommending Auto-completions for Software Modeling Activities (TK, PM, PR), pp. 170–186.
ASEASE-2013-ThungWLL #api #automation #feature model
Automatic recommendation of API methods from feature requests (FT, SW, DL, JLL), pp. 290–300.
ICSEICSE-2013-Balachandran #automation #code review #quality #static analysis #using
Reducing human effort and improving quality in peer code reviews using automatic static analysis and reviewer recommendation (VB), pp. 931–940.
ICSEICSE-2013-LeeKS #named #visual notation
NavClus: a graphical recommender for assisting code exploration (SL, SK, MS), pp. 1315–1318.
ICSEICSE-2013-SawadskyMJ #named #web
Reverb: recommending code-related web pages (NS, GCM, RJ), pp. 812–821.
SACSAC-2013-BlancoR #query
Inferring user utility for query revision recommendation (HB, FR), pp. 245–252.
SACSAC-2013-CapelleHHF #semantics #using
Semantic news recommendation using wordnet and bing similarities (MC, FH, AH, FF), pp. 296–302.
SACSAC-2013-CeccarelliGLNP #query #semantics
When entities meet query recommender systems: semantic search shortcuts (DC, SG, CL, FMN, RP), pp. 933–938.
SACSAC-2013-ChenNKX
Users segmentations for recommendation (LC, RN, SK, YX), pp. 279–280.
SACSAC-2013-HayashiIN #visual notation
A visual analytics tool for system logs adopting variable recommendation and feature-based filtering (AH, TI, SN), pp. 996–998.
SACSAC-2013-KoutrouliT
Credible recommendation exchange mechanism for P2P reputation systems (EK, AT), pp. 1943–1948.
SACSAC-2013-LeeKP #hybrid
A tour recommendation service for electric vehicles based on a hybrid orienteering model (JL, SWK, GLP), pp. 1652–1654.
SACSAC-2013-LommatzschKA #hybrid #learning #modelling #semantics
Learning hybrid recommender models for heterogeneous semantic data (AL, BK, SA), pp. 275–276.
SACSAC-2013-Manzato #feedback #metadata
gSVD++: supporting implicit feedback on recommender systems with metadata awareness (MGM), pp. 908–913.
SACSAC-2013-RokachSSCS
Recommending insurance riders (LR, GS, BS, EC, GS), pp. 253–260.
SACSAC-2013-ZengC #data fusion #matrix #semistructured data
Heterogeneous data fusion via matrix factorization for augmenting item, group and friend recommendations (WZ, LC), pp. 237–244.
SACSAC-2013-ZhangL #algorithm #debugging #developer #hybrid
A hybrid bug triage algorithm for developer recommendation (TZ, BL), pp. 1088–1094.
HTHT-2012-DellschaftS #quality
Measuring the influence of tag recommenders on the indexing quality in tagging systems (KD, SS), pp. 73–82.
PODSPODS-2012-DengFG #complexity #on the #problem
On the complexity of package recommendation problems (TD, WF, FG), pp. 261–272.
SIGMODSIGMOD-2012-BarbosaMLO #named #network #visualisation #web
VRRC: web based tool for visualization and recommendation on co-authorship network (EMB, MMM, GRL, JPMdO), p. 865.
SIGMODSIGMOD-2012-PavlidisMCBBRYMHR #social #social media
Anatomy of a gift recommendation engine powered by social media (YP, MM, IC, AB, RB, RR, RY, MM, VH, AR), pp. 757–764.
VLDBVLDB-2012-KanagalAPJYP #behaviour #learning #taxonomy #using
Supercharging Recommender Systems using Taxonomies for Learning User Purchase Behavior (BK, AA, SP, VJ, JY, LGP), pp. 956–967.
VLDBVLDB-2012-YinCLYC
Challenging the Long Tail Recommendation (HY, BC, JL, JY, CC), pp. 896–907.
CSMRCSMR-2012-HeinemannBHH #api
Identifier-Based Context-Dependent API Method Recommendation (LH, VB, MH, BH), pp. 31–40.
CSMRCSMR-2012-TerraVCB #architecture #refactoring
Recommending Refactorings to Reverse Software Architecture Erosion (RT, MTV, KC, RdSB), pp. 335–340.
WCREWCRE-2012-SteidlHJ #analysis #network #using
Using Network Analysis for Recommendation of Central Software Classes (DS, BH, EJ), pp. 93–102.
AIIDEAIIDE-2012-LeeBL #automation #machine learning
Sports Commentary Recommendation System (SCoReS): Machine Learning for Automated Narrative (GL, VB, EAL).
CHICHI-2012-BauerCGSWWK #mobile #named
ShutEye: encouraging awareness of healthy sleep recommendations with a mobile, peripheral display (JSB, SC, BG, JWS, EW, NFW, JAK), pp. 1401–1410.
CHICHI-2012-NowakN #behaviour #monitoring #online
Effects of behavior monitoring and perceived system benefit in online recommender systems (MN, CN), pp. 2243–2246.
CHICHI-2012-OganWBRCLC #case study #collaboration #design
Collaboration in cognitive tutor use in latin America: field study and design recommendations (AO, EW, RSJdB, GRM, MJC, TL, AMJBdC), pp. 1381–1390.
CHICHI-2012-PiorkowskiFSBBJBS #empirical #information management
Reactive information foraging: an empirical investigation of theory-based recommender systems for programmers (DP, SDF, CS, CB, MMB, BEJ, RKEB, CS), pp. 1471–1480.
CSCWCSCW-2012-PriedhorskyPST #algorithm #evaluation #personalisation
Recommending routes in the context of bicycling: algorithms, evaluation, and the value of personalization (RP, DP, SS, LGT), pp. 979–988.
ICEISICEIS-J-2012-GeJG #analysis
Bringing Diversity to Recommendation Lists — An Analysis of the Placement of Diverse Items (MG, DJ, FG), pp. 293–305.
ICEISICEIS-v2-2012-GeJGH
Effects of the Placement of Diverse Items in Recommendation Lists (MG, DJ, FG, MH), pp. 201–208.
CIKMCIKM-2012-AntonellisSD
Dynamic covering for recommendation systems (IA, ADS, SD), pp. 26–34.
CIKMCIKM-2012-BaeK #classification #effectiveness
An effective category classification method based on a language model for question category recommendation on a cQA service (KB, YK), pp. 2255–2258.
CIKMCIKM-2012-BambaSGBF #concept #scalability #using
The twitaholic next door.: scalable friend recommender system using a concept-sensitive hash function (PB, JS, CG, NB, JF), pp. 2275–2278.
CIKMCIKM-2012-BlancoCLPS #exclamation #why
You should read this! let me explain you why: explaining news recommendations to users (RB, DC, CL, RP, FS), pp. 1995–1999.
CIKMCIKM-2012-CaoYDWW #graph #modelling #process #workflow
Graph-based workflow recommendation: on improving business process modeling (BC, JY, SD, DW, ZW), pp. 1527–1531.
CIKMCIKM-2012-CheungSM #social #synthesis #using
Using program synthesis for social recommendations (AC, ASL, SM), pp. 1732–1736.
CIKMCIKM-2012-Diaz-AvilesDGSN #online #topic #twitter #what
What is happening right now ... that interests me?: online topic discovery and recommendation in twitter (EDA, LD, ZG, LST, WN), pp. 1592–1596.
CIKMCIKM-2012-DuttingHW #trust
Maximizing revenue from strategic recommendations under decaying trust (PD, MH, IW), pp. 2283–2286.
CIKMCIKM-2012-FangS #approach #feedback #learning
A latent pairwise preference learning approach for recommendation from implicit feedback (YF, LS), pp. 2567–2570.
CIKMCIKM-2012-GaoZLH #clustering #twitter
Twitter hyperlink recommendation with user-tweet-hyperlink three-way clustering (DG, RZ, WL, YH), pp. 2535–2538.
CIKMCIKM-2012-GuoMCJ #learning #social
Learning to recommend with social relation ensemble (LG, JM, ZC, HJ), pp. 2599–2602.
CIKMCIKM-2012-HaKKFP
Top-N recommendation through belief propagation (JH, SHK, SWK, CF, SP), pp. 2343–2346.
CIKMCIKM-2012-HuangKCMGR
Recommending citations: translating papers into references (WH, SK, CC, PM, CLG, LR), pp. 1910–1914.
CIKMCIKM-2012-HwangLKL #on the #performance #using
On using category experts for improving the performance and accuracy in recommender systems (WSH, HJL, SWK, ML), pp. 2355–2358.
CIKMCIKM-2012-JiangCLYWZY #social
Social contextual recommendation (MJ, PC, RL, QY, FW, WZ, SY), pp. 45–54.
CIKMCIKM-2012-JiangCWYZY #multi #relational #social
Social recommendation across multiple relational domains (MJ, PC, FW, QY, WZ, SY), pp. 1422–1431.
CIKMCIKM-2012-KaratzoglouBCB #mobile
Climbing the app wall: enabling mobile app discovery through context-aware recommendations (AK, LB, KC, MB), pp. 2527–2530.
CIKMCIKM-2012-KoenigsteinRS #framework #matrix #performance #retrieval
Efficient retrieval of recommendations in a matrix factorization framework (NK, PR, YS), pp. 535–544.
CIKMCIKM-2012-LeePKL #graph #named #novel #ranking
PathRank: a novel node ranking measure on a heterogeneous graph for recommender systems (SL, SP, MK, SgL), pp. 1637–1641.
CIKMCIKM-2012-LiangXTC #topic
Time-aware topic recommendation based on micro-blogs (HL, YX, DT, PC), pp. 1657–1661.
CIKMCIKM-2012-LiKBCL #approach #named #probability #query
DQR: a probabilistic approach to diversified query recommendation (RL, BK, BB, RC, EL), pp. 16–25.
CIKMCIKM-2012-LiL #framework #named
MEET: a generalized framework for reciprocal recommender systems (LL, TL), pp. 35–44.
CIKMCIKM-2012-LinXLHL #named #personalisation #social
PRemiSE: personalized news recommendation via implicit social experts (CL, RX, LL, ZH, TL), pp. 1607–1611.
CIKMCIKM-2012-LiuTYL
Exploring personal impact for group recommendation (XL, YT, MY, WCL), pp. 674–683.
CIKMCIKM-2012-MahajanRTM #algorithm #named
LogUCB: an explore-exploit algorithm for comments recommendation (DKM, RR, CT, AM), pp. 6–15.
CIKMCIKM-2012-MeleBG #graph
The early-adopter graph and its application to web-page recommendation (IM, FB, AG), pp. 1682–1686.
CIKMCIKM-2012-OliveiraGBBAZG #automation #query
Automatic query expansion based on tag recommendation (VCdO, GdCMG, FB, WCB, JMA, NZ, MAG), pp. 1985–1989.
CIKMCIKM-2012-PapaioannouROA #assessment #distributed #effectiveness #web
A decentralized recommender system for effective web credibility assessment (TGP, JER, AO, KA), pp. 704–713.
CIKMCIKM-2012-RedaPTPS #named
Metaphor: a system for related search recommendations (AR, YP, MT, CP, SS), pp. 664–673.
CIKMCIKM-2012-SunWGM #hybrid #learning #rank
Learning to rank for hybrid recommendation (JS, SW, BJG, JM), pp. 2239–2242.
CIKMCIKM-2012-TangZLW #mining #quality
Incorporating occupancy into frequent pattern mining for high quality pattern recommendation (LT, LZ, PL, MW), pp. 75–84.
CIKMCIKM-2012-TorresHWS #query
Query recommendation for children (SDT, DH, IW, PS), pp. 2010–2014.
CIKMCIKM-2012-WanKC #social
Location-sensitive resources recommendation in social tagging systems (CW, BK, DWC), pp. 1960–1964.
CIKMCIKM-2012-ZhangLZW
Relation regularized subspace recommending for related scientific articles (QZ, JL, ZZ, LW), pp. 2503–2506.
CIKMCIKM-2012-ZhuGCL #behaviour #mining #query
More than relevance: high utility query recommendation by mining users’ search behaviors (XZ, JG, XC, YL), pp. 1814–1818.
ECIRECIR-2012-YanZ #approach #community
A New Approach to Answerer Recommendation in Community Question Answering Services (ZY, JZ), pp. 121–132.
ICMLICML-2012-PurushothamL #collaboration #matrix #social #topic
Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems (SP, YL), p. 92.
KDDKDD-2012-0002L #named
RecMax: exploiting recommender systems for fun and profit (AG, LVSL), pp. 1294–1302.
KDDKDD-2012-BawabMC #personalisation #query #topic
Finding trending local topics in search queries for personalization of a recommendation system (ZAB, GHM, JFC), pp. 397–405.
KDDKDD-2012-FengW #personalisation #social
Incorporating heterogeneous information for personalized tag recommendation in social tagging systems (WF, JW), pp. 1276–1284.
KDDKDD-2012-Posse #lessons learnt #network #scalability #social
Key lessons learned building recommender systems for large-scale social networks (CP), p. 587.
KDDKDD-2012-ShenJ #learning #social
Learning personal + social latent factor model for social recommendation (YS, RJ), pp. 1303–1311.
KDDKDD-2012-ShiA #dataset #mobile
GetJar mobile application recommendations with very sparse datasets (KS, KA), pp. 204–212.
KDDKDD-2012-ShiZKYLW #named #network #semantics
HeteRecom: a semantic-based recommendation systemin heterogeneous networks (CS, CZ, XK, PSY, GL, BW), pp. 1552–1555.
KDDKDD-2012-TangWSS #collaboration
Cross-domain collaboration recommendation (JT, SW, JS, HS), pp. 1285–1293.
KDDKDD-2012-WuWCT #detection #hybrid #named
HySAD: a semi-supervised hybrid shilling attack detector for trustworthy product recommendation (ZW, JW, JC, DT), pp. 985–993.
KDDKDD-2012-YangSL #network #online #social
Circle-based recommendation in online social networks (XY, HS, YL), pp. 1267–1275.
KDIRKDIR-2012-BarbieriBCMR #modelling #probability #sequence
Probabilistic Sequence Modeling for Recommender Systems (NB, AB, MC, GM, ER), pp. 75–84.
KDIRKDIR-2012-DinsoreanuMHP #approach
A Unified Approach for Context-sensitive Recommendations (MD, FCM, OLH, RP), pp. 85–94.
KDIRKDIR-2012-FormosoFCC #performance #using
Using Neighborhood Pre-computation to Increase Recommendation Efficiency (VF, DF, FC, VC), pp. 333–335.
KDIRKDIR-2012-FukumotoMM #analysis #collaboration #sentiment
Collaborative Filtering based on Sentiment Analysis of Guest Reviews for Hotel Recommendation (FF, CM, SM), pp. 193–198.
KDIRKDIR-2012-LuongHGH #network #social
Exploiting Social Networks for Publication Venue Recommendations (HPL, TH, SG, KH), pp. 239–245.
KEODKEOD-2012-AbdelazzizN #ontology #using
Enhancing the Results of Recommender Systems using Implicit Ontology Relations (LA, KN), pp. 5–14.
KEODKEOD-2012-LuC #clustering #documentation #order
Bringing Order to Legal Documents — An Issue-based Recommendation System Via Cluster Association (QL, JGC), pp. 76–88.
KMISKMIS-2012-SmirnovKS #collaboration #ontology
Ontology Matching in Context-driven Collaborative Recommending Systems (AVS, AK, NS), pp. 139–144.
RecSysRecSys-2012-AharonKLK #elicitation #personalisation
Dynamic personalized recommendation of comment-eliciting stories (MA, AK, RL, YK), pp. 209–212.
RecSysRecSys-2012-Amatriain
Building industrial-scale real-world recommender systems (XA), pp. 7–8.
RecSysRecSys-2012-AminYSBP #delivery #network #social
Social referral: leveraging network connections to deliver recommendations (MSA, BY, SS, AB, CP), pp. 273–276.
RecSysRecSys-2012-AntunesCG #approach #development
An approach to context-based recommendation in software development (BA, JC, PG), pp. 171–178.
RecSysRecSys-2012-BellufXG #case study #online #personalisation #scalability
Case study on the business value impact of personalized recommendations on a large online retailer (TB, LX, RG), pp. 277–280.
RecSysRecSys-2012-BostandjievOH #hybrid #interactive #named #visual notation
TasteWeights: a visual interactive hybrid recommender system (SB, JO, TH), pp. 35–42.
RecSysRecSys-2012-ChhabraR #named
CubeThat: news article recommender (SC, PR), pp. 295–296.
RecSysRecSys-2012-Diaz-AvilesDSN #realtime #social
Real-time top-n recommendation in social streams (EDA, LD, LST, WN), pp. 59–66.
RecSysRecSys-2012-Diaz-AvilesGN #rank
Swarming to rank for recommender systems (EDA, MG, WN), pp. 229–232.
RecSysRecSys-2012-EkstrandR #algorithm #predict
When recommenders fail: predicting recommender failure for algorithm selection and combination (MDE, JR), pp. 233–236.
RecSysRecSys-2012-GertnerLW #enterprise
Recommenders for the enterprise: event, contact, and group (ASG, BL, JW), pp. 299–300.
RecSysRecSys-2012-HaririMB #music #topic
Context-aware music recommendation based on latenttopic sequential patterns (NH, BM, RDB), pp. 131–138.
RecSysRecSys-2012-JiangJFZ
Recommending academic papers via users’ reading purposes (YJ, AJ, YF, DZ), pp. 241–244.
RecSysRecSys-2012-KarimiFNS #learning #matrix
Exploiting the characteristics of matrix factorization for active learning in recommender systems (RK, CF, AN, LST), pp. 317–320.
RecSysRecSys-2012-Knijnenburg
Conducting user experiments in recommender systems (BPK), pp. 3–4.
RecSysRecSys-2012-KnijnenburgBOK #social
Inspectability and control in social recommenders (BPK, SB, JO, AK), pp. 43–50.
RecSysRecSys-2012-KoenigsteinNPS
The Xbox recommender system (NK, NN, UP, NS), pp. 281–284.
RecSysRecSys-2012-Landia #documentation #folksonomy
Utilising document content for tag recommendation in folksonomies (NL), pp. 325–328.
RecSysRecSys-2012-Lempel #challenge #web
Recommendation challenges in web media settings (RL), pp. 205–206.
RecSysRecSys-2012-LeviMDT
Finding a needle in a haystack of reviews: cold start context-based hotel recommender system (AL, OM, CD, NT), pp. 115–122.
RecSysRecSys-2012-LeviMDT12a
Finding a needle in a haystack of reviews: cold start context-based hotel recommender system demo (AL, OM, CD, NT), pp. 305–306.
RecSysRecSys-2012-LiuCCY #named
Enlister: baidu’s recommender system for the biggest chinese Q&A website (QL, TC, JC, DY), pp. 285–288.
RecSysRecSys-2012-LiuXCGXBZ
Influential seed items recommendation (QL, BX, EC, YG, HX, TB, YZ), pp. 245–248.
RecSysRecSys-2012-Manzato
Discovering latent factors from movies genres for enhanced recommendation (MGM), pp. 249–252.
RecSysRecSys-2012-MolingBR #feedback
Optimal radio channel recommendations with explicit and implicit feedback (OM, LB, FR), pp. 75–82.
RecSysRecSys-2012-Ninaus #heuristic #requirements #using
Using group recommendation heuristics for the prioritization of requirements (GN), pp. 329–332.
RecSysRecSys-2012-NingK #linear
Sparse linear methods with side information for top-n recommendations (XN, GK), pp. 155–162.
RecSysRecSys-2012-NoiaMOR #modelling #web
Exploiting the web of data in model-based recommender systems (TDN, RM, VCO, DR), pp. 253–256.
RecSysRecSys-2012-NunesH #overview #perspective
Personality-based recommender systems: an overview (MASNN, RH), pp. 5–6.
RecSysRecSys-2012-Parra #visualisation
Beyond lists: studying the effect of different recommendation visualizations (DP), pp. 333–336.
RecSysRecSys-2012-PessemierDM #design #evaluation
Design and evaluation of a group recommender system (TDP, SD, LM), pp. 225–228.
RecSysRecSys-2012-PraweshP #feedback #probability
Probabilistic news recommender systems with feedback (SP, BP), pp. 257–260.
RecSysRecSys-2012-RibeiroLVZ #multi
Pareto-efficient hybridization for multi-objective recommender systems (MTR, AL, AV, NZ), pp. 19–26.
RecSysRecSys-2012-RodriguezPZ #multi #optimisation
Multiple objective optimization in recommender systems (MR, CP, EZ), pp. 11–18.
RecSysRecSys-2012-SaidTH #challenge
The challenge of recommender systems challenges (AS, DT, AH), pp. 9–10.
RecSysRecSys-2012-SklarSH #realtime
Recommending interesting events in real-time with foursquare check-ins (MS, BS, AH), pp. 311–312.
RecSysRecSys-2012-StrickrothP #community #network #quality
High quality recommendations for small communities: the case of a regional parent network (SS, NP), pp. 107–114.
RecSysRecSys-2012-Wakeling #design #library
The user-centered design of a recommender system for a universal library catalogue (SW), pp. 337–340.
RecSysRecSys-2012-WuGRR #microblog
Making recommendations in a microblog to improve the impact of a focal user (SW, LG, WR, LR), pp. 265–268.
RecSysRecSys-2012-YangCZLY #feedback #mining #music
Local implicit feedback mining for music recommendation (DY, TC, WZ, QL, YY), pp. 91–98.
RecSysRecSys-2012-YangSGL #network #on the #social #using
On top-k recommendation using social networks (XY, HS, YG, YL), pp. 67–74.
RecSysRecSys-2012-Zanker #information management
The influence of knowledgeable explanations on users’ perception of a recommender system (MZ), pp. 269–272.
RecSysRecSys-2012-ZelenikB #information management
Reducing the sparsity of contextual information for recommender systems (DZ, MB), pp. 341–344.
RecSysRecSys-2012-ZhangTSWY #approach #image #semantics
A semantic approach to recommending text advertisements for images (WZ, LT, XS, HW, YY), pp. 179–186.
SEKESEKE-2012-HuiLCDM #e-commerce #empirical
An Empirical Study on Recommendation Methods for Vertical B2C E-commerce (CH, JL, ZC, XD, WM), pp. 139–142.
SEKESEKE-2012-RadulovicG #network #process #semantics
Semantic Technology Recommendation Based on the Analytic Network Process (FR, RGC), pp. 611–616.
SEKESEKE-2012-SmithP #design pattern
Dynamically recommending design patterns (SS, DRP), pp. 499–504.
SIGIRSIGIR-2012-AdeyanjuSAKRF #adaptation #concept #query
Adaptation of the concept hierarchy model with search logs for query recommendation on intranets (IAA, DS, MDA, UK, ANDR, MF), pp. 5–14.
SIGIRSIGIR-2012-AgarwalCEW #online #personalisation
Personalized click shaping through lagrangian duality for online recommendation (DA, BCC, PE, XW), pp. 485–494.
SIGIRSIGIR-2012-BonchiPSVV #performance #query
Efficient query recommendations in the long tail via center-piece subgraphs (FB, RP, FS, HV, RV), pp. 345–354.
SIGIRSIGIR-2012-ChenCSX #music #named
Pictune: situational music recommendation from geotagged pictures (KC, GC, LS, FX), p. 1011.
SIGIRSIGIR-2012-ChenCZJYY #collaboration #personalisation #twitter
Collaborative personalized tweet recommendation (KC, TC, GZ, OJ, EY, YY), pp. 661–670.
SIGIRSIGIR-2012-Cleger-TamayoFH
Explaining neighborhood-based recommendations (SCT, JMFL, JFH), pp. 1063–1064.
SIGIRSIGIR-2012-MaoLCCS #named
myDJ: recommending karaoke songs from one’s own voice (KM, XL, KC, GC, LS), p. 1009.
SIGIRSIGIR-2012-PeraN #named
BReK12: a book recommender for K-12 users (MSP, YKN), pp. 1037–1038.
SIGIRSIGIR-2012-QumsiyehN #multi #personalisation #predict
Predicting the ratings of multimedia items for making personalized recommendations (RQ, YKN), pp. 475–484.
SIGIRSIGIR-2012-SaidJNPAS #case study #user study
Estimating the magic barrier of recommender systems: a user study (AS, BJJ, SN, TP, SA, CS), pp. 1061–1062.
SIGIRSIGIR-2012-ShiKBLHO #named #optimisation
TFMAP: optimizing MAP for top-n context-aware recommendation (YS, AK, LB, ML, AH, NO), pp. 155–164.
SIGIRSIGIR-2012-ShiZWLH #adaptation
Adaptive diversification of recommendation results via latent factor portfolio (YS, XZ, JW, ML, AH), pp. 175–184.
SIGIRSIGIR-2012-XuJW #community
Dual role model for question recommendation in community question answering (FX, ZJ, BW), pp. 771–780.
SIGIRSIGIR-2012-YeLL #approach #generative #social
Exploring social influence for recommendation: a generative model approach (MY, XL, WCL), pp. 671–680.
MODELSMoDELS-2012-MaraeeB #analysis #comparative #constraints #guidelines #modelling #uml
Inter-association Constraints in UML2: Comparative Analysis, Usage Recommendations, and Modeling Guidelines (AM, MB), pp. 302–318.
OOPSLAOOPSLA-2012-MusluBHEN #analysis #development #ide
Speculative analysis of integrated development environment recommendations (KM, YB, RH, MDE, DN), pp. 669–682.
RERE-2012-Cleland-HuangMMA #traceability
Breaking the big-bang practice of traceability: Pushing timely trace recommendations to project stakeholders (JCH, PM, MM, SA), pp. 231–240.
FSEFSE-2012-Murphy-HillJM #developer #development
Improving software developers’ fluency by recommending development environment commands (ERMH, RJ, GCM), p. 42.
ICSEICSE-2012-HuangLXW #mining #repository #xml
Mining application repository to recommend XML configuration snippets (SH, YL, YX, WW), pp. 1451–1452.
ICSEICSE-2012-McMillanHPCM #agile #prototype #source code
Recommending source code for use in rapid software prototypes (CM, NH, DP, JCH, BM), pp. 848–858.
ICSEICSE-2012-MusluBHEN #ide
Improving IDE recommendations by considering global implications of existing recommendations (KM, YB, RH, MDE, DN), pp. 1349–1352.
ICSEICSE-2012-ZhangYZFZZO #api #automation #parametricity
Automatic parameter recommendation for practical API usage (CZ, JY, YZ, JF, XZ, JZ, PO), pp. 826–836.
SACSAC-2012-ChenNX #collaboration
A common neighbour based two-way collaborative recommendation method (LC, RN, YX), pp. 214–215.
SACSAC-2012-HijikataKN #user satisfaction
The relation between user intervention and user satisfaction for information recommendation (YH, YK, SN), pp. 2002–2007.
SACSAC-2012-KuttyCN #modelling #using
A people-to-people recommendation system using tensor space models (SK, LC, RN), pp. 187–192.
SACSAC-2012-LageDD #effectiveness #microblog #towards
Towards effective group recommendations for microblogging users (RL, FAD, PD), pp. 923–928.
SACSAC-2012-ManzatoG #multi
A multimedia recommender system based on enriched user profiles (MGM, RG), pp. 975–980.
SACSAC-2012-MirizziNSR #semantics #web
Web 3.0 in action: Vector Space Model for semantic (movie) Recommendations (RM, TDN, EDS, AR), pp. 403–405.
SACSAC-2012-TrabelsiMY #folksonomy #markov #modelling #named
HMM-CARe: Hidden Markov Models for context-aware tag recommendation in folksonomies (CT, BM, SBY), pp. 957–961.
SACSAC-2012-WangZHHZWT #mining #mobile
Context-aware role mining for mobile service recommendation (JW, CZ, CH, LH, LZ, RKW, JT), pp. 173–178.
CBSECBSE-2011-MeloP #component #framework #open source
A component-based open-source framework for general-purpose recommender systems (FMM, ÁRPJ), pp. 67–72.
DocEngDocEng-2011-ChidlovskiiB #learning #metric #network #social
Local metric learning for tag recommendation in social networks (BC, AB), pp. 205–208.
JCDLJCDL-2011-LiZYWWW #gpu #social #using
A social network-aware top-N recommender system using GPU (RL, YZ, HY, XW, JW, BW), pp. 287–296.
JCDLJCDL-2011-NascimentoLSG #framework #independence #research
A source independent framework for research paper recommendation (CN, AHFL, ASdS, MAG), pp. 297–306.
JCDLJCDL-2011-SugiyamaK #research
Serendipitous recommendation for scholarly papers considering relations among researchers (KS, MYK), pp. 307–310.
SIGMODSIGMOD-2011-ChandramouliLEM #named #realtime
StreamRec: a real-time recommender system (BC, JJL, AE, MFM), pp. 1243–1246.
VLDBVLDB-2011-LevandoskiELEMR #architecture #benchmark #metric #named #performance
RecBench: Benchmarks for Evaluating Performance of Recommender System Architectures (JJL, MDE, ML, AE, MFM, JR), pp. 911–920.
VLDBVLDB-2011-MachanavajjhalaKS #personalisation #question #social
Personalized Social Recommendations — Accurate or Private? (AM, AK, ADS), pp. 440–450.
ITiCSEITiCSE-2011-HarrachA #collaboration #learning #optimisation #process #using
Optimizing collaborative learning processes by using recommendation systems (SH, MA), p. 389.
ICSMEICSM-2011-LeeK #clustering
Clustering and recommending collections of code relevant to tasks (SL, SK), pp. 536–539.
WCREWCRE-2011-SurianLLTLF #collaboration #developer #network #people
Recommending People in Developers’ Collaboration Network (DS, NL, DL, HT, EPL, CF), pp. 379–388.
CoGVS-Games-2011-VescoukisD #evaluation
Disaster Management Evaluation and Recommendation (VCV, NDD), pp. 244–249.
CHICHI-2011-ChenNC #online #social
Speak little and well: recommending conversations in online social streams (JC, RN, EHhC), pp. 217–226.
CHICHI-2011-John #design #modelling #performance #predict #user interface #using
Using predictive human performance models to inspire and support UI design recommendations (BEJ), pp. 983–986.
CHICHI-2011-SchwindBH
I will do it, but i don’t like it: user reactions to preference-inconsistent recommendations (CS, JB, FWH), pp. 349–352.
CSCWCSCW-2011-GuyURPJ #enterprise
Do you want to know?: recommending strangers in the enterprise (IG, SU, IR, AP, MJ), pp. 285–294.
HCIDUXU-v1-2011-BaltrunasLPR #mobile
Context-Aware Places of Interest Recommendations for Mobile Users (LB, BL, SP, FR), pp. 531–540.
HCIHCI-DDA-2011-KogaT #topic #twitter #using
Developing a User Recommendation Engine on Twitter Using Estimated Latent Topics (HK, TT), pp. 461–470.
HCIHCI-ITE-2011-KuramotoYMT #interactive #multi
Recommendation System Based on Interaction with Multiple Agents for Users with Vague Intention (IK, AY, MM, YT), pp. 351–357.
HCIHCI-MIIE-2011-AiharaKT #behaviour #cost analysis
Behavioral Cost-Based Recommendation Model for Wanderers in Town (KA, HK, HT), pp. 271–279.
HCIHCI-UA-2011-OlivierWP #game studies #music #named
MusicTagger: Exploiting User Generated Game Data for Music Recommendation (HO, MW, NP), pp. 678–687.
HCIHIMI-v1-2011-BreyerNSBK #personalisation
A Comprehensive Reference Model for Personalized Recommender Systems (MB, KN, CS, DB, AK), pp. 528–537.
HCIHIMI-v1-2011-KoCECCKH
A Smart Movie Recommendation System (SKK, SMC, HSE, JWC, HC, LK, YSH), pp. 558–566.
HCIOCSC-2011-PujariK #approach #machine learning #predict
A Supervised Machine Learning Link Prediction Approach for Tag Recommendation (MP, RK), pp. 336–344.
HCIOCSC-2011-PuseyM #collaboration #design #learning #wiki
Assessments in Large- and Small-Scale Wiki Collaborative Learning Environments: Recommendations for Educators and Wiki Designers (PP, GM), pp. 60–68.
ICEISICEIS-v2-2011-ChenGC #enterprise
Enterprise Knowledge Practice and Recommendation based on HOTP Model (BC, YG, DC), pp. 444–450.
ICEISICEIS-v2-2011-WangS #education #information management
Application of Recommender Engine in Academic Degree and Postgraduate Education Knowledge Management System (XW, HS), pp. 455–458.
CIKMCIKM-2011-BoimMN #collaboration #refinement
Diversification and refinement in collaborative filtering recommender (RB, TM, SN), pp. 739–744.
CIKMCIKM-2011-DongBHRC #optimisation #personalisation
User action interpretation for personalized content optimization in recommender systems (AD, JB, XH, SR, YC), pp. 2129–2132.
CIKMCIKM-2011-DraidiPPV #named
P2Prec: a social-based P2P recommendation system (FD, EP, DP, GV), pp. 2593–2596.
CIKMCIKM-2011-DrosouP #database #named
ReDRIVE: result-driven database exploration through recommendations (MD, EP), pp. 1547–1552.
CIKMCIKM-2011-LiLSG #community #named #online #performance #privacy #social
YANA: an efficient privacy-preserving recommender system for online social communities (DL, QL, LS, NG), pp. 2269–2272.
CIKMCIKM-2011-LuHSY
Recommending citations with translation model (YL, JH, DS, HY), pp. 2017–2020.
CIKMCIKM-2011-MoghaddamJE #online #overview #personalisation #predict #quality
Review recommendation: personalized prediction of the quality of online reviews (SM, MJ, ME), pp. 2249–2252.
CIKMCIKM-2011-PeraN #personalisation
A personalized recommendation system on scholarly publications (MSP, YKN), pp. 2133–2136.
CIKMCIKM-2011-SeguelaS #hybrid
A semi-supervised hybrid system to enhance the recommendation of channels in terms of campaign roi (JS, GS), pp. 2265–2268.
CIKMCIKM-2011-ShiehLW
Recommendation in the end-to-end encrypted domain (JRS, CYL, JLW), pp. 915–924.
CIKMCIKM-2011-SongQF #visualisation
Hierarchical tag visualization and application for tag recommendations (YS, BQ, UF), pp. 1331–1340.
CIKMCIKM-2011-WangHLCH #learning
Learning to recommend questions based on public interest (JW, XH, ZL, WHC, BH), pp. 2029–2032.
CIKMCIKM-2011-YanGC #higher-order #learning #query
Context-aware query recommendation by learning high-order relation in query logs (XY, JG, XC), pp. 2073–2076.
ECIRECIR-2011-ChilukaAP #approach #predict #scalability
A Link Prediction Approach to Recommendations in Large-Scale User-Generated Content Systems (NC, NA, JAP), pp. 189–200.
ECIRECIR-2011-HannonMS #twitter
Finding Useful Users on Twitter: Twittomender the Followee Recommender (JH, KM, BS), pp. 784–787.
ECIRECIR-2011-MoshfeghiJ #collaboration
Role of Emotional Features in Collaborative Recommendation (YM, JMJ), pp. 738–742.
ECIRECIR-2011-PhelanMBS #twitter #using
Terms of a Feather: Content-Based News Recommendation and Discovery Using Twitter (OP, KM, MB, BS), pp. 448–459.
ECIRECIR-2011-ShiLH11a #how #question #trust
How Far Are We in Trust-Aware Recommendation? (YS, ML, AH), pp. 704–707.
ECIRECIR-2011-WartenaW #topic
Improving Tag-Based Recommendation by Topic Diversification (CW, MW), pp. 43–54.
KDDKDD-2011-AgarwalCL #locality #modelling #multi
Localized factor models for multi-context recommendation (DA, BCC, BL), pp. 609–617.
KDDKDD-2011-DrorKMS #exclamation
I want to answer; who has a question?: Yahoo! answers recommender system (GD, YK, YM, IS), pp. 1109–1117.
KDDKDD-2011-GeLXTC #cost analysis
Cost-aware travel tour recommendation (YG, QL, HX, AT, JC), pp. 983–991.
KDDKDD-2011-PradelSDGRUFD #case study
A case study in a recommender system based on purchase data (BP, SS, JD, SG, CR, NU, FFS, FDJ), pp. 377–385.
KDDKDD-2011-WangB #collaboration #modelling #topic
Collaborative topic modeling for recommending scientific articles (CW, DMB), pp. 448–456.
KEODKEOD-2011-HusakovaC #multi #ontology #simulation
Exploitation of Ontology-based Recommendation System with Multi-agent Simulations (MH, PC), pp. 433–436.
KMISKMIS-2011-Borchardt #towards
Towards a Value-oriented KMS Recommendation for SME (UB), pp. 347–350.
RecSysRecSys-2011-Alam #clustering #web
Intelligent web usage clustering based recommender system (SA), pp. 367–370.
RecSysRecSys-2011-BaltrunasLR #matrix
Matrix factorization techniques for context aware recommendation (LB, BL, FR), pp. 301–304.
RecSysRecSys-2011-BarbieriCMO #approach #modelling
Modeling item selection and relevance for accurate recommendations: a bayesian approach (NB, GC, GM, RO), pp. 21–28.
RecSysRecSys-2011-Bellogin #performance #predict
Predicting performance in recommender systems (AB), pp. 371–374.
RecSysRecSys-2011-BelloginCC #algorithm #comparison #evaluation
Precision-oriented evaluation of recommender systems: an algorithmic comparison (AB, PC, IC), pp. 333–336.
RecSysRecSys-2011-BourkeMS #people #social
Power to the people: exploring neighbourhood formations in social recommender system (SB, KM, BS), pp. 337–340.
RecSysRecSys-2011-BraunhoferKR #mobile #music
Recommending music for places of interest in a mobile travel guide (MB, MK, FR), pp. 253–256.
RecSysRecSys-2011-CamposDS #evaluation #matrix #predict #testing #towards
Towards a more realistic evaluation: testing the ability to predict future tastes of matrix factorization-based recommenders (PGC, FD, MASM), pp. 309–312.
RecSysRecSys-2011-CelmaL #music #revisited
Music recommendation and discovery revisited (ÒC, PL), pp. 7–8.
RecSysRecSys-2011-Chen #design #interactive #interface #social
Interface and interaction design for group and social recommender systems (YC), pp. 363–366.
RecSysRecSys-2011-DalyG #effectiveness #social #using
Effective event discovery: using location and social information for scoping event recommendations (EMD, WG), pp. 277–280.
RecSysRecSys-2011-DayanKBRSASF #benchmark #framework #metric
Recommenders benchmark framework (AD, GK, NB, LR, BS, AA, RS, RF), pp. 353–354.
RecSysRecSys-2011-EkstrandLKR #ecosystem #research
Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit (MDE, ML, JAK, JR), pp. 133–140.
RecSysRecSys-2011-EkstrandLKR11a #composition #framework #named
LensKit: a modular recommender framework (MDE, ML, JK, JR), pp. 349–350.
RecSysRecSys-2011-Faridani #analysis #canonical #correlation #sentiment #using
Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search (SF), pp. 355–358.
RecSysRecSys-2011-ForbesZ #matrix
Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation (PF, MZ), pp. 261–264.
RecSysRecSys-2011-GantnerRFS #library #named
MyMediaLite: a free recommender system library (ZG, SR, CF, LST), pp. 305–308.
RecSysRecSys-2011-GorgoglionePT #behaviour #trust
The effect of context-aware recommendations on customer purchasing behavior and trust (MG, UP, AT), pp. 85–92.
RecSysRecSys-2011-GuzziRB #interactive #multi
Interactive multi-party critiquing for group recommendation (FG, FR, RDB), pp. 265–268.
RecSysRecSys-2011-Hurley #robust
Robustness of recommender systems (NJH), pp. 9–10.
RecSysRecSys-2011-JamaliHE #network #probability #rating #social
A generalized stochastic block model for recommendation in social rating networks (MJ, TH, ME), pp. 53–60.
RecSysRecSys-2011-KimE #personalisation #rank
Personalized PageRank vectors for tag recommendations: inside FolkRank (HNK, AES), pp. 45–52.
RecSysRecSys-2011-KnijnenburgRW #how #interactive
Each to his own: how different users call for different interaction methods in recommender systems (BPK, NJMR, MCW), pp. 141–148.
RecSysRecSys-2011-KnijnenburgWK #evaluation
A pragmatic procedure to support the user-centric evaluation of recommender systems (BPK, MCW, AK), pp. 321–324.
RecSysRecSys-2011-KoenigsteinDK #exclamation #modelling #music #taxonomy
Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy (NK, GD, YK), pp. 165–172.
RecSysRecSys-2011-LeeL #analysis #behaviour #music
My head is your tail: applying link analysis on long-tailed music listening behavior for music recommendation (KL, KL), pp. 213–220.
RecSysRecSys-2011-LeeSKLL #graph #multi #random #ranking
Random walk based entity ranking on graph for multidimensional recommendation (SL, SiS, MK, DL, SgL), pp. 93–100.
RecSysRecSys-2011-LiuMLY #elicitation #rating
Wisdom of the better few: cold start recommendation via representative based rating elicitation (NNL, XM, CL, QY), pp. 37–44.
RecSysRecSys-2011-LiuMX #multi
Multi-criteria service recommendation based on user criteria preferences (LL, NM, DLX), pp. 77–84.
RecSysRecSys-2011-LiZL #integration #named #personalisation
LOGO: a long-short user interest integration in personalized news recommendation (LL, LZ, TL), pp. 317–320.
RecSysRecSys-2011-Makrehchi #learning #social #topic
Social link recommendation by learning hidden topics (MM), pp. 189–196.
RecSysRecSys-2011-PaparrizosCG
Machine learned job recommendation (IKP, BBC, AG), pp. 325–328.
RecSysRecSys-2011-PizzatoS #collaboration #people #probability
Stochastic matching and collaborative filtering to recommend people to people (LASP, CS), pp. 341–344.
RecSysRecSys-2011-PraweshP
The “top N” news recommender: count distortion and manipulation resistance (SP, BP), pp. 237–244.
RecSysRecSys-2011-PuCH #evaluation #framework
A user-centric evaluation framework for recommender systems (PP, LC, RH), pp. 157–164.
RecSysRecSys-2011-SabinC #named #online
myMicSound: an online sound-based microphone recommendation system (ATS, CLC), pp. 351–352.
RecSysRecSys-2011-SaidBLH #challenge
Challenge on context-aware movie recommendation: CAMRa2011 (AS, SB, EWDL, JH), pp. 385–386.
RecSysRecSys-2011-SekoYMM #behaviour #representation #using
Group recommendation using feature space representing behavioral tendency and power balance among members (SS, TY, MM, SyM), pp. 101–108.
RecSysRecSys-2011-Steck
Item popularity and recommendation accuracy (HS), pp. 125–132.
RecSysRecSys-2011-Sundaresan
Recommender systems at the long tail (NS), pp. 1–6.
RecSysRecSys-2011-SymeonidisTM #multi #network #predict #rating #social
Product recommendation and rating prediction based on multi-modal social networks (PS, ET, YM), pp. 61–68.
RecSysRecSys-2011-TayebiJEGF #named
CrimeWalker: a recommendation model for suspect investigation (MAT, MJ, ME, UG, RF), pp. 173–180.
RecSysRecSys-2011-Tschersich #design #guidelines #mobile
Design guidelines for mobile group recommender systems to handle inaccurate or missing location data (MT), pp. 359–362.
RecSysRecSys-2011-Tunkelang
Recommendations as a conversation with the user (DT), pp. 11–12.
RecSysRecSys-2011-VargasC #metric #rank
Rank and relevance in novelty and diversity metrics for recommender systems (SV, PC), pp. 109–116.
RecSysRecSys-2011-WangSS #e-commerce
Utilizing related products for post-purchase recommendation in e-commerce (JW, BS, NS), pp. 329–332.
RecSysRecSys-2011-WoerndlHBG #mobile
A model for proactivity in mobile, context-aware recommender systems (WW, JH, RB, DGV), pp. 273–276.
RecSysRecSys-2011-WuRR #monitoring #social #social media
Recommendations in social media for brand monitoring (SW, WR, LR), pp. 345–348.
RecSysRecSys-2011-XinS #matrix #multi #probability
Multi-value probabilistic matrix factorization for IP-TV recommendations (YX, HS), pp. 221–228.
RecSysRecSys-2011-YuanCZ #social
Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation (QY, LC, SZ), pp. 245–252.
RecSysRecSys-2011-YuPL #adaptation #social
Adaptive social similarities for recommender systems (LY, RP, ZL), pp. 257–260.
RecSysRecSys-2011-Zhang
Anchoring effects of recommender systems (JZ), pp. 375–378.
SEKESEKE-2011-CaiZWXS #approach #component
Recommending Component by Citation: A Semi-supervised Approach for Determination (SC, YZ, LW, BX, WS), pp. 489–494.
SEKESEKE-2011-ZhangSPCM #architecture #design #quality #towards
Towards Quality Based Solution Recommendation in Decision-Centric Architecture Design (LZ, YS, YP, XC, HM), pp. 776–781.
SIGIRSIGIR-2011-BelemMPAG #multi
Associative tag recommendation exploiting multiple textual features (FB, EFM, TP, JMA, MAG), pp. 1033–1042.
SIGIRSIGIR-2011-BelloginCC #analysis #hybrid #network #self #social
Self-adjusting hybrid recommenders based on social network analysis (AB, PC, IC), pp. 1147–1148.
SIGIRSIGIR-2011-ChenC #web
Recommending ephemeral items at web scale (YC, JFC), pp. 1013–1022.
SIGIRSIGIR-2011-LeungLL #clustering #collaboration #framework #named
CLR: a collaborative location recommendation framework based on co-clustering (KWTL, DLL, WCL), pp. 305–314.
SIGIRSIGIR-2011-LiDS #concept #semantics #using
Semantic tag recommendation using concept model (CL, AD, AS), pp. 1159–1160.
SIGIRSIGIR-2011-LiLS #social
Exploiting endorsement information and social influence for item recommendation (CTL, SDL, MKS), pp. 1131–1132.
SIGIRSIGIR-2011-LinDW #image
Image annotation based on recommendation model (ZL, GD, JW), pp. 1097–1098.
SIGIRSIGIR-2011-LiWLKP #named #personalisation #scalability
SCENE: a scalable two-stage personalized news recommendation system (LL, DW, TL, DK, BP), pp. 125–134.
SIGIRSIGIR-2011-MaLKL #modelling #probability #web
Probabilistic factor models for web site recommendation (HM, CL, IK, MRL), pp. 265–274.
SIGIRSIGIR-2011-RendleGFS #performance
Fast context-aware recommendations with factorization machines (SR, ZG, CF, LST), pp. 635–644.
SIGIRSIGIR-2011-RicciGBAGP #named #quality #web
GreenMeter: a tool for assessing the quality and recommending tags for web 2.0 applications (SMRR, DAG, FMB, JMA, MAG, ROP), pp. 1279–1280.
SIGIRSIGIR-2011-ShiYGN #machine learning #network #scalability #social
A large scale machine learning system for recommending heterogeneous content in social networks (YS, DY, AG, SN), pp. 1337–1338.
SIGIRSIGIR-2011-TangWB
Recommending interesting activity-related local entities (JT, RWW, PB), pp. 1161–1162.
SIGIRSIGIR-2011-VargasCV
Intent-oriented diversity in recommender systems (SV, PC, DV), pp. 1211–1212.
SIGIRSIGIR-2011-Wang #comprehension #information management #using
Understanding and using contextual information in recommender systems (LW), pp. 1329–1330.
SIGIRSIGIR-2011-WangZ #e-commerce
Utilizing marginal net utility for recommendation in e-commerce (JW, YZ), pp. 1003–1012.
SIGIRSIGIR-2011-WeiHL #analysis #framework #semantics
A unified framework for recommendations based on quaternary semantic analysis (WC, WH, MLL), pp. 1023–1032.
SIGIRSIGIR-2011-YangLSZZ #collaboration #learning #using
Collaborative competitive filtering: learning recommender using context of user choice (SHY, BL, AJS, HZ, ZZ), pp. 295–304.
SIGIRSIGIR-2011-YeYLL #collaboration
Exploiting geographical influence for collaborative point-of-interest recommendation (MY, PY, WCL, DLL), pp. 325–334.
SIGIRSIGIR-2011-ZhouYZ #functional #matrix
Functional matrix factorizations for cold-start recommendation (KZ, SHY, HZ), pp. 315–324.
ECOOPECOOP-2011-Duala-EkokoR #api #using
Using Structure-Based Recommendations to Facilitate Discoverability in APIs (EDE, MPR), pp. 79–104.
ASEASE-2011-LozanoKM #named #search-based #source code
Mendel: Source code recommendation based on a genetic metaphor (AL, AK, KM), pp. 384–387.
ASEASE-2011-WangFWLXY #api #effectiveness #java #named #web
APIExample: An effective web search based usage example recommendation system for java APIs (LW, LF, LW, GL, BX, FY), pp. 592–595.
ESEC-FSEESEC-FSE-2011-ZhengZL #api #using #web
Cross-library API recommendation using web search engines (WZ, QZ, MRL), pp. 480–483.
ICSEICSE-2011-DumitruGHCMCM #mining #on-demand
On-demand feature recommendations derived from mining public product descriptions (HD, MG, NH, JCH, BM, CCH, MM), pp. 181–190.
ICSEICSE-2011-NguyenNNN #evolution
Aspect recommendation for evolving software (TTN, HVN, HAN, TNN), pp. 361–370.
PDPPDP-2011-GrossBS #distributed #framework #named #platform
GroupRecoPF: Innovative Group Recommendations in a Distributed Platform (TG, CB, MS), pp. 293–300.
HTHT-2010-GasslerZTS #named #using
SnoopyDB: narrowing the gap between structured and unstructured information using recommendations (WG, EZ, MT, GS), pp. 271–272.
HTHT-2010-GuoJ #collaboration #personalisation #topic
Topic-based personalized recommendation for collaborative tagging system (YG, JBDJ), pp. 61–66.
HTHT-2010-LiangXLNT #personalisation
Connecting users and items with weighted tags for personalized item recommendations (HL, YX, YL, RN, XT), pp. 51–60.
HTHT-2010-LiuFZ #social
Speak the same language with your friends: augmenting tag recommenders with social relations (KL, BF, WZ), pp. 45–50.
JCDLJCDL-2010-SugiyamaK #research
Scholarly paper recommendation via user’s recent research interests (KS, MYK), pp. 29–38.
SIGMODSIGMOD-2010-MoriczDB #named
PYMK: friend recommendation at myspace (MM, YD, MB), pp. 999–1002.
SIGMODSIGMOD-2010-ParameswaranKBG #algorithm #mining #named #precedence
Recsplorer: recommendation algorithms based on precedence mining (AGP, GK, BB, HGM), pp. 87–98.
VLDBVLDB-2010-AkbarnejadCEKMOPV #sql
SQL QueRIE Recommendations (JA, GC, ME, SK, SM, DO, NP, JSVV), pp. 1597–1600.
CSEETCSEET-2010-GarousiM #education #testing
Current State of the Software Testing Education in North American Academia and Some Recommendations for the New Educators (VG, AM), pp. 89–96.
EDMEDM-2010-RankaAC #named
Pundit: Intelligent Recommender of Courses (AR, FA, HSC), pp. 339–340.
SIGITESIGITE-2010-YuanZ #design #education #network #taxonomy
Design and implement a networking curriculum in light of ACM IT curriculum recommendations and bloom’s taxonomy (DY, JZ), pp. 155–156.
CHICHI-2010-ChenNNBC #twitter
Short and tweet: experiments on recommending content from information streams (JC, RN, LN, MSB, EHC), pp. 1185–1194.
CHICHI-2010-WalshG #game studies #named
Curator: a game with a purpose for collection recommendation (GW, JG), pp. 2079–2082.
CIKMCIKM-2010-BelemMAGP #metric #quality #web
Exploiting co-occurrence and information quality metrics to recommend tags in web 2.0 applications (FMB, EFM, JMdA, MAG, GLP), pp. 1793–1796.
CIKMCIKM-2010-CaiLLTL
Recommendation based on object typicality (YC, HfL, QL, JT, JL), pp. 1529–1532.
CIKMCIKM-2010-Garcia-AlvaradoCO #query
OLAP-based query recommendation (CGA, ZC, CO), pp. 1353–1356.
CIKMCIKM-2010-GemmellSMB #hybrid #social
Hybrid tag recommendation for social annotation systems (JG, TS, BM, RDB), pp. 829–838.
CIKMCIKM-2010-GolbandiKL #on the
On bootstrapping recommender systems (NG, YK, RL), pp. 1805–1808.
CIKMCIKM-2010-GuoCXS #approach #query #social
A structured approach to query recommendation with social annotation data (JG, XC, GX, HS), pp. 619–628.
CIKMCIKM-2010-KurashimaIIF #using
Travel route recommendation using geotags in photo sharing sites (TK, TI, GI, KF), pp. 579–588.
CIKMCIKM-2010-LiangXLN #folksonomy #personalisation #taxonomy
Personalized recommender system based on item taxonomy and folksonomy (HL, YX, YL, RN), pp. 1641–1644.
CIKMCIKM-2010-MinkovCLTJ #collaboration
Collaborative future event recommendation (EM, BC, JL, SJT, TSJ), pp. 819–828.
CIKMCIKM-2010-NakatsujiFTUFI #music #novel
Classical music for rock fans?: novel recommendations for expanding user interests (MN, YF, AT, TU, KF, TI), pp. 949–958.
CIKMCIKM-2010-ParameswaranGU
Evaluating, combining and generalizing recommendations with prerequisites (AGP, HGM, JDU), pp. 919–928.
CIKMCIKM-2010-PengZZW #collaboration #social
Collaborative filtering in social tagging systems based on joint item-tag recommendations (JP, DDZ, HZ, FYW), pp. 809–818.
CIKMCIKM-2010-ShavittWW #peer-to-peer #using
Building recommendation systems using peer-to-peer shared content (YS, EW, UW), pp. 1457–1460.
CIKMCIKM-2010-WartenaSW #keyword
Selecting keywords for content based recommendation (CW, WS, MW), pp. 1533–1536.
CIKMCIKM-2010-ZhangZ #modelling #personalisation
Discriminative factored prior models for personalized content-based recommendation (LZ, YZ), pp. 1569–1572.
CIKMCIKM-2010-ZhaoBCGWZ #concurrent #learning #online #thread
Learning a user-thread alignment manifold for thread recommendation in online forum (JZ, JB, CC, ZG, CW, CZ), pp. 559–568.
ECIRECIR-2010-RedpathGMC #collaboration
Collaborative Filtering: The Aim of Recommender Systems and the Significance of User Ratings (JR, DHG, SIM, LC), pp. 394–406.
KDDKDD-2010-AgarwalCE #learning #online #performance
Fast online learning through offline initialization for time-sensitive recommendation (DA, BCC, PE), pp. 703–712.
KDDKDD-2010-GeXTXGP #energy #mobile
An energy-efficient mobile recommender system (YG, HX, AT, KX, MG, MJP), pp. 899–908.
KDDKDD-2010-JahrerTL #predict
Combining predictions for accurate recommender systems (MJ, AT, RAL), pp. 693–702.
KDDKDD-2010-Steck #random #testing
Training and testing of recommender systems on data missing not at random (HS), pp. 713–722.
KDDKDD-2010-XiangYZCZYS #graph
Temporal recommendation on graphs via long- and short-term preference fusion (LX, QY, SZ, LC, XZ, QY, JS), pp. 723–732.
KDIRKDIR-2010-ArmanoV
A Unifying View of Contextual Advertising and Recommender Systems (GA, EV), pp. 463–466.
KDIRKDIR-2010-Quinteiro-GonzalezMHLMP #delivery #framework #platform
Recommendation System in an Audiovisual Delivery Platform (JMQG, EMJ, PHM, ALR, LMM, ASdP), pp. 379–382.
RecSysRecSys-2010-AdomaviciusZ #algorithm #on the
On the stability of recommendation algorithms (GA, JZ), pp. 47–54.
RecSysRecSys-2010-AlbanesedMPP #modelling #problem #social
Modeling recommendation as a social choice problem (MA, Ad, VM, FP, AP), pp. 329–332.
RecSysRecSys-2010-AydayF #online
A belief propagation based recommender system for online services (EA, FF), pp. 217–220.
RecSysRecSys-2010-Baeza-Yates #predict #query
Query intent prediction and recommendation (RABY), pp. 5–6.
RecSysRecSys-2010-BaglioniBBCFVP #lightweight #mobile #privacy
A lightweight privacy preserving SMS-based recommendation system for mobile users (EB, LB, LB, UMC, LF, AV, GP), pp. 191–198.
RecSysRecSys-2010-Balakrishnan #on-demand
On-demand set-based recommendations (SB), pp. 313–316.
RecSysRecSys-2010-BaltrunasMR #collaboration #rank
Group recommendations with rank aggregation and collaborative filtering (LB, TM, FR), pp. 119–126.
RecSysRecSys-2010-BarrioR #collaboration
Geolocated movie recommendations based on expert collaborative filtering (JBB, XAR), pp. 347–348.
RecSysRecSys-2010-BenchettaraKR #approach #collaboration #machine learning #predict
A supervised machine learning link prediction approach for academic collaboration recommendation (NB, RK, CR), pp. 253–256.
RecSysRecSys-2010-BerkovskyF #analysis
Group-based recipe recommendations: analysis of data aggregation strategies (SB, JF), pp. 111–118.
RecSysRecSys-2010-BerkovskyFCB #algorithm #game studies #process
Recommender algorithms in activity motivating games (SB, JF, MC, DB), pp. 175–182.
RecSysRecSys-2010-BollenKWG #comprehension
Understanding choice overload in recommender systems (DGFMB, BPK, MCW, MPG), pp. 63–70.
RecSysRecSys-2010-Burke #algorithm
Evaluating the dynamic properties of recommendation algorithms (RDB), pp. 225–228.
RecSysRecSys-2010-CantadorBV #social
Content-based recommendation in social tagging systems (IC, AB, DV), pp. 237–240.
RecSysRecSys-2010-CastagnosJP
Eye-tracking product recommenders’ usage (SC, NJ, PP), pp. 29–36.
RecSysRecSys-2010-CebrianPVA #music
Music recommendations with temporal context awareness (TC, MP, PV, XA), pp. 349–352.
RecSysRecSys-2010-CremonesiKT #algorithm #performance
Performance of recommender algorithms on top-n recommendation tasks (PC, YK, RT), pp. 39–46.
RecSysRecSys-2010-DalyGM #network #social
The network effects of recommending social connections (EMD, WG, DRM), pp. 301–304.
RecSysRecSys-2010-DavidsonLLNVGGHLLS #video
The YouTube video recommendation system (JD, BL, JL, PN, TVV, UG, SG, YH, ML, BL, DS), pp. 293–296.
RecSysRecSys-2010-DeryKRS #nondeterminism
Iterative voting under uncertainty for group recommender systems (LND, MK, LR, BS), pp. 265–268.
RecSysRecSys-2010-EsparzaOS #on the #realtime #web
On the real-time web as a source of recommendation knowledge (SGE, MPO, BS), pp. 305–308.
RecSysRecSys-2010-FreyneBDG #network #social
Social networking feeds: recommending items of interest (JF, SB, EMD, WG), pp. 277–280.
RecSysRecSys-2010-GedikliJ #rating
Recommending based on rating frequencies (FG, DJ), pp. 233–236.
RecSysRecSys-2010-GeDJ
Beyond accuracy: evaluating recommender systems by coverage and serendipity (MG, CDB, DJ), pp. 257–260.
RecSysRecSys-2010-GuyJAMNNS #industrial #perspective
Will recommenders kill search?: recommender systems — an industry perspective (IG, AJ, PA, PM, PN, CN, HS), pp. 7–12.
RecSysRecSys-2010-HammerKA #named
MED-StyleR: METABO diabetes-lifestyle recommender (SH, JK, EA), pp. 285–288.
RecSysRecSys-2010-HannonBS #collaboration #twitter #using
Recommending twitter users to follow using content and collaborative filtering approaches (JH, MB, BS), pp. 199–206.
RecSysRecSys-2010-Hu #design
Design and user issues in personality-based recommender systems (RH), pp. 357–360.
RecSysRecSys-2010-ImK #personalisation
Personalizing the settings for Cf-based recommender systems (II, BHK), pp. 245–248.
RecSysRecSys-2010-JamaliE #matrix #network #social #trust
A matrix factorization technique with trust propagation for recommendation in social networks (MJ, ME), pp. 135–142.
RecSysRecSys-2010-JawaheerSK #feedback #music #online
Characterisation of explicit feedback in an online music recommendation service (GJ, MS, PK), pp. 317–320.
RecSysRecSys-2010-KaragiannidisAZV #framework #named
Hydra: an open framework for virtual-fusion of recommendation filters (SK, SA, CZ, AV), pp. 229–232.
RecSysRecSys-2010-KaratzoglouABO #collaboration #multi
Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering (AK, XA, LB, NO), pp. 79–86.
RecSysRecSys-2010-LappasG #interactive #network #social
Interactive recommendations in social endorsement networks (TL, DG), pp. 127–134.
RecSysRecSys-2010-LeeB #collaboration #process #self #using
Using self-defined group activities for improvingrecommendations in collaborative tagging systems (DHL, PB), pp. 221–224.
RecSysRecSys-2010-LipczakM #learning #performance
Learning in efficient tag recommendation (ML, EEM), pp. 167–174.
RecSysRecSys-2010-MarxHM #algorithm #comprehension #hybrid
Increasing consumers’ understanding of recommender results: a preference-based hybrid algorithm with strong explanatory power (PM, THT, AM), pp. 297–300.
RecSysRecSys-2010-MoldvayBFS #clustering #graph #named #semantics #social
Tagmantic: a social recommender service based on semantic tag graphs and tag clusters (JM, IB, AF, MS), pp. 345–346.
RecSysRecSys-2010-Musto #modelling
Enhanced vector space models for content-based recommender systems (CM), pp. 361–364.
RecSysRecSys-2010-PizzatoRCKK #named #online
RECON: a reciprocal recommender for online dating (LASP, TR, TC, IK, JK), pp. 207–214.
RecSysRecSys-2010-PizzatoRCKYK #online
Reciprocal recommender system for online dating (LASP, TR, TC, IK, KY, JK), pp. 353–354.
RecSysRecSys-2010-Said #hybrid #identification
Identifying and utilizing contextual data in hybrid recommender systems (AS), pp. 365–368.
RecSysRecSys-2010-SandholmUAH
Global budgets for local recommendations (TS, HU, CA, BAH), pp. 13–20.
RecSysRecSys-2010-Schirru #enterprise #platform #social #social media #topic
Topic-based recommendations in enterprise social media sharing platforms (RS), pp. 369–372.
RecSysRecSys-2010-Servan-Schreiber
Recommendation analytics: the business view, and the business case (ESS), pp. 215–216.
RecSysRecSys-2010-Shani #tutorial
Tutorial on evaluating recommender systems (GS), p. 1.
RecSysRecSys-2010-VasukiNLD #network #using
Affiliation recommendation using auxiliary networks (VV, NN, ZL, ISD), pp. 103–110.
RecSysRecSys-2010-XieLW
Breaking out of the box of recommendations: from items to packages (MX, LVSL, PTW), pp. 151–158.
RecSysRecSys-2010-ZangerleGS #collaboration #information management
Recommending structure in collaborative semistructured information systems (EZ, WG, GS), pp. 261–264.
RecSysRecSys-2010-ZhaoZYZZF #social #what
Who is talking about what: social map-based recommendation for content-centric social websites (SZ, MXZ, QY, XZ, WZ, RF), pp. 143–150.
RecSysRecSys-2010-ZhengWZLY #case study #empirical #user study
Do clicks measure recommendation relevancy?: an empirical user study (HZ, DW, QZ, HL, TY), pp. 249–252.
SIGIRSIGIR-2010-GuyZRCU #people #social #social media
Social media recommendation based on people and tags (IG, NZ, IR, DC, EU), pp. 194–201.
SIGIRSIGIR-2010-HuangAH #classification #tool support
Medical search and classification tools for recommendation (XH, AA, QH), p. 707.
SIGIRSIGIR-2010-Kawamae
Serendipitous recommendations via innovators (NK), pp. 218–225.
SIGIRSIGIR-2010-LathiaHCA
Temporal diversity in recommender systems (NL, SH, LC, XA), pp. 210–217.
SIGIRSIGIR-2010-WangLC10a #social #social media
User comments for news recommendation in social media (JW, QL, YPC), pp. 881–882.
SIGIRSIGIR-2010-ZhengLLZ #composition
Flickr group recommendation based on tensor decomposition (NZ, QL, SL, LZ), pp. 737–738.
ASEASE-2010-ZhengZLX #generative #random #sequence #testing
Random unit-test generation with MUT-aware sequence recommendation (WZ, QZ, MRL, TX), pp. 293–296.
ICSEICSE-2010-HolmesW
Customized awareness: recommending relevant external change events (RH, RJW), pp. 465–474.
ICSEICSE-2010-Schroter
Failure preventing recommendations (AS), pp. 397–400.
SACSAC-2010-BallatoreMKB #adaptation #interactive #named
RecoMap: an interactive and adaptive map-based recommender (AB, GM, CK, MB), pp. 887–891.
SACSAC-2010-DuraoD #hybrid #personalisation
Extending a hybrid tag-based recommender system with personalization (FAD, PD), pp. 1723–1727.
SACSAC-2010-KimY #multi #personalisation
New theoretical findings in multiple personalized recommendations (YHK, YY), pp. 94–98.
SACSAC-2010-ShinKNNTO #named #ontology #using
ONTOMO: web-based ontology building system: ---instance recommendation using bootstrapping--- (IS, TK, HN, KN, YT, AO), pp. 1442–1443.
SACSAC-2010-SuYT #music #novel
A novel music recommender by discovering preferable perceptual-patterns from music pieces (JHS, HHY, VST), pp. 1924–1928.
ICSTICST-2010-EngstromRW #empirical #evaluation #testing
An Empirical Evaluation of Regression Testing Based on Fix-Cache Recommendations (EE, PR, GW), pp. 75–78.
HTHT-2009-MahmoodR #adaptation
Improving recommender systems with adaptive conversational strategies (TM, FR), pp. 73–82.
HTHT-2009-SiersdorferS #folksonomy #social #web
Social recommender systems for web 2.0 folksonomies (SS, SS), pp. 261–270.
JCDLJCDL-2009-LiC #approach #graph #kernel #machine learning #predict
Recommendation as link prediction: a graph kernel-based machine learning approach (XL, HC), pp. 213–216.
JCDLJCDL-2009-MarshallRZ #assessment #education #library #self #standard
Dimensional standard alignment in K-12 digital libraries: assessment of self-found vs. recommended curriculum (BM, RFR, MZ), pp. 11–14.
JCDLJCDL-2009-YangWWZZ #named
CARES: a ranking-oriented CADAL recommender system (CY, BW, JW, YZ, LZ), pp. 203–212.
SIGMODSIGMOD-2009-KoutrikaBG #flexibility #named
FlexRecs: expressing and combining flexible recommendations (GK, BB, HGM), pp. 745–758.
VLDBVLDB-2009-Amer-YahiaRCDY #performance #semantics
Group Recommendation: Semantics and Efficiency (SAY, SBR, AC, GD, CY), pp. 754–765.
VLDBVLDB-2009-El-HelwIZ #named #statistics
StatAdvisor: Recommending Statistical Views (AEH, IFI, CZ), pp. 1306–1317.
EDMEDM-2009-NagataTSKM
Edu-mining for Book Recommendation for Pupils (RN, KT, KS, JK, KM), pp. 91–100.
EDMEDM-2009-SacinASO #data mining #education #mining #using
Recommendation in Higher Education Using Data Mining Techniques (CVS, JBA, LS, AO), pp. 191–199.
ICSMEICSM-2009-MaSZS
Expert recommendation with usage expertise (DM, DS, TZ, JS), pp. 535–538.
MSRMSR-2009-RastkarM #interactive #on the #question #what
On what basis to recommend: Changesets or interactions? (SR, GCM), pp. 155–158.
CHICHI-2009-ChenGDMG #network #people #social
Make new friends, but keep the old: recommending people on social networking sites (JC, WG, CD, MJM, IG), pp. 201–210.
CHICHI-2009-HansenG
Mixing it up: recommending collections of items (DLH, JG), pp. 1217–1226.
CHICHI-2009-RaoHNJ
My Dating Site Thinks I’m a Loser: effects of personal photos and presentation intervals on perceptions of recommender systems (SR, TH, CN, NJ), pp. 221–224.
CHICHI-2009-ReichlingW #automation #generative
Expert recommender systems in practice: evaluating semi-automatic profile generation (TR, VW), pp. 59–68.
HCIOCSC-2009-SongNKE #using #word
A Proposed Movie Recommendation Method Using Emotional Word Selection (MS, HN, HGK, JE), pp. 525–534.
ICEISICEIS-DISI-2009-Pitkaranta #information retrieval
Applying Information Retrieval for Market Basket Recommender Systems (TP), pp. 138–143.
ICEISICEIS-J-2009-JerbiRTZ
Applying Recommendation Technology in OLAP Systems (HJ, FR, OT, GZ), pp. 220–233.
ICEISICEIS-SAIC-2009-CiuffoI #case study #collaboration #information management #using
Using Grids to Support Information Filtering Systems — A Case Study of Running Collaborative Filtering Recommendations on gLite (LNC, EI), pp. 12–18.
ICEISICEIS-SAIC-2009-DrumondGMA #implementation #multi
Implementation Issues of the Infonorma Multi-agent Recommender System (LD, RG, DM, GA), pp. 128–133.
CIKMCIKM-2009-AnastasakosHKR #approach #collaboration #graph #using
A collaborative filtering approach to ad recommendation using the query-ad click graph (TA, DH, SK, HR), pp. 1927–1930.
CIKMCIKM-2009-CaoCYX
Enhancing recommender systems under volatile userinterest drifts (HC, EC, JY, HX), pp. 1257–1266.
CIKMCIKM-2009-ShiWY #framework #named #semantics
Msuggest: a semantic recommender framework for traditional chinese medicine book search engine (SS, BW, YY), pp. 533–542.
CIKMCIKM-2009-SunCSSWL #learning
Learning to recommend questions based on user ratings (KS, YC, XS, YIS, XW, CYL), pp. 751–758.
CIKMCIKM-2009-XinKDL #framework #multi #random #social
A social recommendation framework based on multi-scale continuous conditional random fields (XX, IK, HD, MRL), pp. 1247–1256.
ECIRECIR-2009-MoshfeghiAPJ #collaboration #predict #rating #semantics
Movie Recommender: Semantically Enriched Unified Relevance Model for Rating Prediction in Collaborative Filtering (YM, DA, BP, JMJ), pp. 54–65.
ECIRECIR-2009-PapadopoulosMKB #graph
Lexical Graphs for Improved Contextual Ad Recommendation (SP, FM, YK, BB), pp. 216–227.
KDDKDD-2009-JamaliE #named #random #trust
TrustWalker: a random walk model for combining trust-based and item-based recommendation (MJ, ME), pp. 397–406.
KDDKDD-2009-LiDJEL #random
Grocery shopping recommendations based on basket-sensitive random walk (ML, MBD, IHJ, WED, PJGL), pp. 1215–1224.
KDDKDD-2009-McSherryM #privacy
Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders (FM, IM), pp. 627–636.
KDDKDD-2009-OnumaTF #algorithm #named #novel
TANGENT: a novel, “Surprise me”, recommendation algorithm (KO, HT, CF), pp. 657–666.
KDDKDD-2009-RendleMNS #learning #ranking
Learning optimal ranking with tensor factorization for tag recommendation (SR, LBM, AN, LST), pp. 727–736.
KEODKEOD-2009-SantosS
Interpretation and Recommendation Tasks Supported by Ceres System (CPS, DRdS), pp. 464–467.
RecSysRecSys-2009-AbbassiALVY
Getting recommender systems to think outside the box (ZA, SAY, LVSL, SV, CY), pp. 285–288.
RecSysRecSys-2009-AmatriainPTO
Rate it again: increasing recommendation accuracy by user re-rating (XA, JMP, NT, NO), pp. 173–180.
RecSysRecSys-2009-AntonelliFGL #named
DynamicTV: a culture-aware recommender (FA, GF, MG, SL), pp. 257–260.
RecSysRecSys-2009-BaoBT
Stacking recommendation engines with additional meta-features (XB, LB, RT), pp. 109–116.
RecSysRecSys-2009-BaragliaCCFFPS #approach #query
Search shortcuts: a new approach to the recommendation of queries (RB, FC, VC, DF, VF, RP, FS), pp. 77–84.
RecSysRecSys-2009-BaskinK
Preference aggregation in group recommender systems for committee decision-making (JPB, SK), pp. 337–340.
RecSysRecSys-2009-BhattacharjeeGK #architecture #social
An incentive-based architecture for social recommendations (RB, AG, KK), pp. 229–232.
RecSysRecSys-2009-BroccoG #network
Team recommendation in open innovation networks (MB, GG), pp. 365–368.
RecSysRecSys-2009-CastagnosJP #process
Recommenders’ influence on buyers’ decision process (SC, NJ, PP), pp. 361–364.
RecSysRecSys-2009-Castro-HerreraCM #evolution #online
A recommender system for dynamically evolving online forums (CCH, JCH, BM), pp. 213–216.
RecSysRecSys-2009-Chen #adaptation #trade-off
Adaptive tradeoff explanations in conversational recommenders (LC), pp. 225–228.
RecSysRecSys-2009-ChengH #effectiveness #modelling #obfuscation
Effective diverse and obfuscated attacks on model-based recommender systems (ZC, NH), pp. 141–148.
RecSysRecSys-2009-ConryKR #problem
Recommender systems for the conference paper assignment problem (DC, YK, NR), pp. 357–360.
RecSysRecSys-2009-CremonesiT #analysis
Analysis of cold-start recommendations in IPTV systems (PC, RT), pp. 233–236.
RecSysRecSys-2009-FreyneJGG
Increasing engagement through early recommender intervention (JF, MJ, IG, WG), pp. 85–92.
RecSysRecSys-2009-GansnerHKV #clustering #visualisation
Putting recommendations on the map: visualizing clusters and relations (ERG, YH, SGK, CV), pp. 345–348.
RecSysRecSys-2009-GemmellRSCM #ambiguity #folksonomy
The impact of ambiguity and redundancy on tag recommendation in folksonomies (JG, MR, TS, LC, BM), pp. 45–52.
RecSysRecSys-2009-GivonL #predict
Predicting social-tags for cold start book recommendations (SG, VL), pp. 333–336.
RecSysRecSys-2009-Golbeck #social #trust #tutorial #using
Tutorial on using social trust for recommender systems (JG), pp. 425–426.
RecSysRecSys-2009-GreenLAMKHBM #generative
Generating transparent, steerable recommendations from textual descriptions of items (SJG, PL, JA, FM, SK, JH, JB, XWM), pp. 281–284.
RecSysRecSys-2009-GunawardanaM #approach #hybrid
A unified approach to building hybrid recommender systems (AG, CM), pp. 117–124.
RecSysRecSys-2009-GuyZCRUYO #personalisation #social
Personalized recommendation of social software items based on social relations (IG, NZ, DC, IR, EU, SY, SOK), pp. 53–60.
RecSysRecSys-2009-HelouSSG #process #ranking
The 3A contextual ranking system: simultaneously recommending actors, assets, and group activities (SEH, CS, SS, DG), pp. 373–376.
RecSysRecSys-2009-HuP
Acceptance issues of personality-based recommender systems (RH, PP), pp. 221–224.
RecSysRecSys-2009-JamaliE #network #trust #using
Using a trust network to improve top-N recommendation (MJ, ME), pp. 181–188.
RecSysRecSys-2009-JannachH #case study #effectiveness #internet #mobile
A case study on the effectiveness of recommendations in the mobile internet (DJ, KH), pp. 205–208.
RecSysRecSys-2009-JaschkeEHS #testing
Testing and evaluating tag recommenders in a live system (RJ, FE, AH, GS), pp. 369–372.
RecSysRecSys-2009-KawamaeSY #personalisation
Personalized recommendation based on the personal innovator degree (NK, HS, TY), pp. 329–332.
RecSysRecSys-2009-KhezrzadehTW #power of
Harnessing the power of “favorites” lists for recommendation systems (MK, AT, WWW), pp. 289–292.
RecSysRecSys-2009-KnijnenburgW #adaptation #comprehension #elicitation #user satisfaction
Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system (BPK, MCW), pp. 381–384.
RecSysRecSys-2009-KrestelFN
Latent dirichlet allocation for tag recommendation (RK, PF, WN), pp. 61–68.
RecSysRecSys-2009-LousameS
View-based recommender systems (FPL, ES), pp. 389–392.
RecSysRecSys-2009-MaLK #learning #trust
Learning to recommend with trust and distrust relationships (HM, MRL, IK), pp. 189–196.
RecSysRecSys-2009-MoghaddamJEH #feedback #named #trust #using
FeedbackTrust: using feedback effects in trust-based recommendation systems (SM, MJ, ME, JH), pp. 269–272.
RecSysRecSys-2009-NathansonBG
Donation dashboard: a recommender system for donation portfolios (TN, EB, KYG), pp. 253–256.
RecSysRecSys-2009-Nnadi #clustering #correlation #multi #set
Applying relevant set correlation clustering to multi-criteria recommender systems (NN), pp. 401–404.
RecSysRecSys-2009-OMahonyS #learning
Learning to recommend helpful hotel reviews (MPO, BS), pp. 305–308.
RecSysRecSys-2009-PannielloTGPP #comparison
Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems (UP, AT, MG, CP, AP), pp. 265–268.
RecSysRecSys-2009-ParameswaranG
Recommendations with prerequisites (AGP, HGM), pp. 353–356.
RecSysRecSys-2009-ParkC
Pairwise preference regression for cold-start recommendation (STP, WC), pp. 21–28.
RecSysRecSys-2009-PhelanMS #realtime #topic #twitter #using
Using twitter to recommend real-time topical news (OP, KM, BS), pp. 385–388.
RecSysRecSys-2009-PilaszyT #metadata
Recommending new movies: even a few ratings are more valuable than metadata (IP, DT), pp. 93–100.
RecSysRecSys-2009-PudhiyaveetilGLE #concept
Conceptual recommender system for CiteSeerX (AKP, SG, HPL, JE), pp. 241–244.
RecSysRecSys-2009-PuZC
Critiquing recommenders for public taste products (PP, MZ, SC), pp. 249–252.
RecSysRecSys-2009-QasimOWHO #partial order
A partial-order based active cache for recommender systems (UQ, VO, YfBW, MEH, MTÖ), pp. 209–212.
RecSysRecSys-2009-QuerciaC #mobile #named #using
FriendSensing: recommending friends using mobile phones (DQ, LC), pp. 273–276.
RecSysRecSys-2009-Recio-GarciaJSD
Personality aware recommendations to groups (JARG, GJD, AASRG, BDA), pp. 325–328.
RecSysRecSys-2009-Schubert #knowledge-based #personalisation #query
Personalized query relaxations and repairs in knowledge-based recommendation (MS), pp. 409–412.
RecSysRecSys-2009-SemeraroLBG
Knowledge infusion into content-based recommender systems (GS, PL, PB, MdG), pp. 301–304.
RecSysRecSys-2009-SeyerlehnerFW #on the
On the limitations of browsing top-N recommender systems (KS, AF, GW), pp. 321–324.
RecSysRecSys-2009-SymeonidisNM #named
MoviExplain: a recommender system with explanations (PS, AN, YM), pp. 317–320.
RecSysRecSys-2009-Tolomei #mining #process #web
Search the web x.0: mining and recommending web-mediated processes (GT), pp. 417–420.
RecSysRecSys-2009-TsatsouMKD #analysis #framework #personalisation #semantics
A semantic framework for personalized ad recommendation based on advanced textual analysis (DT, FM, IK, PCD), pp. 217–220.
RecSysRecSys-2009-TylerZCZ #categorisation
Ordering innovators and laggards for product categorization and recommendation (SKT, SZ, YC, YZ), pp. 29–36.
RecSysRecSys-2009-UmyarovT #estimation #modelling #rating #using
Improving rating estimation in recommender systems using aggregation- and variance-based hierarchical models (AU, AT), pp. 37–44.
RecSysRecSys-2009-ViappianiB #set
Regret-based optimal recommendation sets in conversational recommender systems (PV, CB), pp. 101–108.
RecSysRecSys-2009-WedelRC #personalisation
Up close and personalized: a marketing view of recommendation systems (MW, RTR, TSC), pp. 3–4.
RecSysRecSys-2009-WeimerKB #matrix
Maximum margin matrix factorization for code recommendation (MW, AK, MB), pp. 309–312.
RecSysRecSys-2009-Zhang
Enhancing diversity in Top-N recommendation (MZ), pp. 397–400.
RecSysRecSys-2009-ZhouR #assessment
Assessment of conversation co-mentions as a resource for software module recommendation (DXZ, PR), pp. 133–140.
SIGIRSIGIR-2009-GuanBMCW #graph #multi #personalisation #ranking #using
Personalized tag recommendation using graph-based ranking on multi-type interrelated objects (ZG, JB, QM, CC, CW), pp. 540–547.
SIGIRSIGIR-2009-KonstasSJ #collaboration #network #on the #social
On social networks and collaborative recommendation (IK, VS, JMJ), pp. 195–202.
SIGIRSIGIR-2009-MaKL #learning #social #trust
Learning to recommend with social trust ensemble (HM, IK, MRL), pp. 203–210.
ECOOPECOOP-2009-ZhongXZPM #api #mining #named
MAPO: Mining and Recommending API Usage Patterns (HZ, TX, LZ, JP, HM), pp. 318–343.
RERE-2009-Castro-HerreraCM #elicitation #online #requirements
Enhancing Stakeholder Profiles to Improve Recommendations in Online Requirements Elicitation (CCH, JCH, BM), pp. 37–46.
ASEASE-2009-HolmesRRW #automation #reuse
Automatically Recommending Triage Decisions for Pragmatic Reuse Tasks (RH, TR, MPR, RJW), pp. 397–408.
ESEC-FSEESEC-FSE-2009-AshokJLRSV #debugging #named
DebugAdvisor: a recommender system for debugging (BA, JMJ, HL, SKR, GS, VV), pp. 373–382.
ICSEICSE-2009-DagenaisR #analysis #api #evolution #named
SemDiff: Analysis and recommendation support for API evolution (BD, MPR), pp. 599–602.
SACSAC-2009-Castro-HerreraDCM #elicitation #requirements #scalability
A recommender system for requirements elicitation in large-scale software projects (CCH, CD, JCH, BM), pp. 1419–1426.
SACSAC-2009-dAciernoMP #library
A recommendation system for browsing digital libraries (Ad, VM, AP), pp. 1771–1778.
SACSAC-2009-PengC #collaboration #multi #named #trust
iTrustU: a blog recommender system based on multi-faceted trust and collaborative filtering (TCP, ScTC), pp. 1278–1285.
HTHT-2008-PanissonRS #framework #implementation #named #social
X-hinter: a framework for implementing social oriented recommender systems (AP, GR, RS), pp. 235–236.
SIGMODSIGMOD-2008-Amer-YahiaGSY #social
From del.icio.us to x.qui.site: recommendations in social tagging sites (SAY, AG, JS, CY), pp. 1323–1326.
SIGMODSIGMOD-2008-Konstan
Introduction to recommender systems (JAK), pp. 1373–1374.
VLDBVLDB-2008-ShaoCTYA #enterprise #named #problem
EasyTicket: a ticket routing recommendation engine for enterprise problem resolution (QS, YC, ST, XY, NA), pp. 1436–1439.
CSEETCSEET-2008-ShoemakerDIM #assurance
Integrating Secure Software Assurance Content with SE2004 Recommendations (DS, AD, JAI, NRM), pp. 59–66.
CHICHI-2008-BellottiBCDFIKNPPRRSW #mobile
Activity-based serendipitous recommendations with the Magitti mobile leisure guide (VB, JBB, EHhC, ND, JF, EI, THK, MWN, KP, BP, PR, MR, DJS, AW), pp. 1157–1166.
CHICHI-2008-ODonovanSGBH #interactive #named #visual notation
PeerChooser: visual interactive recommendation (JO, BS, BG, SB, TH), pp. 1085–1088.
ICEISICEIS-AIDSS-2008-RokachMS #elicitation
Anytime AHP Method for Preferences Elicitation in Stereotype-Based Recommender System (LR, AM, AS), pp. 268–275.
ICEISICEIS-HCI-2008-LucaB #design #implementation #navigation
Microformats Based Navigation Assistant — A Non-intrusive Recommender Agent: Design and Implementation (APL, SCB), pp. 54–61.
ICEISICEIS-J-2008-LucaB08a #experience #user interface #web
Enhancing User Experience on the Web via Microformats-Based Recommendations (APL, SCB), pp. 321–333.
ICEISICEIS-J-2008-WengXLN08a #estimation #performance
An Efficient Neighbourhood Estimation Technique for Making Recommendations (LTW, YX, YL, RN), pp. 253–264.
ICEISICEIS-J-2008-WengXLN08b #quality #taxonomy
Improve Recommendation Quality with Item Taxonomic Information (LTW, YX, YL, RN), pp. 265–279.
ICEISICEIS-SAIC-2008-Uchyigit08a
A Software Agent for Content Based Recommendations for the WWW (GU), pp. 178–183.
ICEISICEIS-SAIC-2008-WengXLLN #taxonomy #web
Web Information Recommendation Making Based on Item Taxonomy (LTW, YX, YL, RN), pp. 20–28.
ICEISICEIS-SAIC-2008-WengXLN #estimation #performance
Efficient Neighbourhood Estimation for Recommendation Making (LTW, YX, YL, RN), pp. 12–19.
CIKMCIKM-2008-ChiZGZ #personalisation #probability
Probabilistic polyadic factorization and its application to personalized recommendation (YC, SZ, YG, YZ), pp. 941–950.
CIKMCIKM-2008-GuoXBY #community
Tapping on the potential of q&a community by recommending answer providers (JG, SX, SB, YY), pp. 921–930.
CIKMCIKM-2008-MaYLK08a #matrix #named #probability #social #using
SoRec: social recommendation using probabilistic matrix factorization (HM, HY, MRL, IK), pp. 931–940.
CIKMCIKM-2008-VatturiGDMB #personalisation
Tag-based filtering for personalized bookmark recommendations (PKV, WG, CD, MJM, BB), pp. 1395–1396.
CIKMCIKM-2008-YatesJPCS #named #smarttech #specification
SHOPSMART: product recommendations through technical specifications and user reviews (AY, JJ, AMP, ADC, NS), pp. 1501–1502.
ECIRECIR-2008-ValletHJ #evaluation #graph #using
Use of Implicit Graph for Recommending Relevant Videos: A Simulated Evaluation (DV, FH, JMJ), pp. 199–210.
KDDKDD-2008-ChenZC #collaboration #community #personalisation
Combinational collaborative filtering for personalized community recommendation (WC, DZ, EYC), pp. 115–123.
KDDKDD-2008-NguyenPS
A software system for buzz-based recommendations (HN, NP, NS), pp. 1093–1096.
RecSysRecSys-2008-AdomaviciusT
Context-aware recommender systems (GA, AT), pp. 335–336.
RecSysRecSys-2008-Baltrunas #information management
Exploiting contextual information in recommender systems (LB), pp. 295–298.
RecSysRecSys-2008-BogersB #using
Recommending scientific articles using citeulike (TB, AvdB), pp. 287–290.
RecSysRecSys-2008-Broder
Computational advertising and recommender systems (AZB), pp. 1–2.
RecSysRecSys-2008-BrodskyHW #framework #named
CARD: a decision-guidance framework and application for recommending composite alternatives (AB, SMH, JW), pp. 171–178.
RecSysRecSys-2008-BryanOC #collaboration #retrieval
Unsupervised retrieval of attack profiles in collaborative recommender systems (KB, MPO, PC), pp. 155–162.
RecSysRecSys-2008-Burke #robust
Robust recommender systems (RDB), pp. 331–332.
RecSysRecSys-2008-CelmaH #approach #novel
A new approach to evaluating novel recommendations (ÒC, PH), pp. 179–186.
RecSysRecSys-2008-ChenP #evaluation #interface
A cross-cultural user evaluation of product recommender interfaces (LC, PP), pp. 75–82.
RecSysRecSys-2008-DegemmisLSB #semantics
Integrating tags in a semantic content-based recommender (MD, PL, GS, PB), pp. 163–170.
RecSysRecSys-2008-DiasLLEL #case study #personalisation
The value of personalised recommender systems to e-business: a case study (MBD, DL, ML, WED, PJGL), pp. 291–294.
RecSysRecSys-2008-GargW #interactive #personalisation
Personalized, interactive tag recommendation for flickr (NG, IW), pp. 67–74.
RecSysRecSys-2008-GeyerDMMF #online #self #topic
Recommending topics for self-descriptions in online user profiles (WG, CD, DRM, MJM, JF), pp. 59–66.
RecSysRecSys-2008-GunawardanaM
Tied boltzmann machines for cold start recommendations (AG, CM), pp. 19–26.
RecSysRecSys-2008-KoutrikaIBG #flexibility
Flexible recommendations over rich data (GK, RI, BB, HGM), pp. 203–210.
RecSysRecSys-2008-KrishnanNNDK #online #predict
Who predicts better?: results from an online study comparing humans and an online recommender system (VK, PKN, MN, RTD, JAK), pp. 211–218.
RecSysRecSys-2008-Kwon #rating #using
Improving top-n recommendation techniques using rating variance (YK), pp. 307–310.
RecSysRecSys-2008-LakiotakiTM #analysis #multi #named
UTA-Rec: a recommender system based on multiple criteria analysis (KL, ST, NFM), pp. 219–226.
RecSysRecSys-2008-Lee #named #trust
PITTCULT: trust-based cultural event recommender (DHL), pp. 311–314.
RecSysRecSys-2008-LiWZZC #named #parallel #query
Pfp: parallel fp-growth for query recommendation (HL, YW, DZ, MZ, EYC), pp. 107–114.
RecSysRecSys-2008-OostendorpR #interface #reduction
Three recommender approaches to interface controls reduction (NO, PR), pp. 235–242.
RecSysRecSys-2008-ParkT #how
The long tail of recommender systems and how to leverage it (YJP, AT), pp. 11–18.
RecSysRecSys-2008-Recio-GarciaDG #prototype
Prototyping recommender systems in jcolibri (JARG, BDA, PAGC), pp. 243–250.
RecSysRecSys-2008-RendleS #kernel #matrix #modelling #scalability
Online-updating regularized kernel matrix factorization models for large-scale recommender systems (SR, LST), pp. 251–258.
RecSysRecSys-2008-ResnickS
The information cost of manipulation-resistance in recommender systems (PR, RS), pp. 147–154.
RecSysRecSys-2008-Sampaio #internet #network #performance #process
A network performance recommendation process for advanced internet applications users (LNS), pp. 315–318.
RecSysRecSys-2008-Santos #adaptation #lifecycle #standard
A recommender system to provide adaptive and inclusive standard-based support along the elearning life cycle (OCS), pp. 319–322.
RecSysRecSys-2008-ShaniCM #mining #web
Mining recommendations from the web (GS, DMC, CM), pp. 35–42.
RecSysRecSys-2008-ShepitsenGMB #clustering #personalisation #social #using
Personalized recommendation in social tagging systems using hierarchical clustering (AS, JG, BM, RDB), pp. 259–266.
RecSysRecSys-2008-SymeonidisNM #reduction
Tag recommendations based on tensor dimensionality reduction (PS, AN, YM), pp. 43–50.
RecSysRecSys-2008-Teppan
Implications of psychological phenomenons for recommender systems (ECT), pp. 323–326.
RecSysRecSys-2008-Umyarov #performance #predict
Leveraging aggregate ratings for improving predictive performance of recommender systems (AU), pp. 327–330.
RecSysRecSys-2008-WuWC #analysis #automation #incremental #probability #semantics
Incremental probabilistic latent semantic analysis for automatic question recommendation (HW, YW, XC), pp. 99–106.
RecSysRecSys-2008-XuJL #documentation #image #online #personalisation #video
Personalized online document, image and video recommendation via commodity eye-tracking (SX, HJ, FCML), pp. 83–90.
RecSysRecSys-2008-ZanardiC #ranking #social #using
Social ranking: uncovering relevant content using tag-based recommender systems (VZ, LC), pp. 51–58.
RecSysRecSys-2008-Zanker #collaboration #constraints
A collaborative constraint-based meta-level recommender (MZ), pp. 139–146.
RecSysRecSys-2008-ZhangH
Avoiding monotony: improving the diversity of recommendation lists (MZ, NH), pp. 123–130.
SEKESEKE-2008-Jannach #development #knowledge-based
Knowledge-based System Development with Scripting Technology: A Recommender System Example (DJ), pp. 405–416.
SEKESEKE-2008-LucasSM #classification #personalisation #towards #using
Comparing the Use of Traditional and Associative Classifiers towards Personalized Recommendations (JPL, SS, MNMG), pp. 607–612.
SIGIRSIGIR-2008-CreceliusKMNPSW #social
Social recommendations at work (TC, MK, SM, TN, JXP, RS, GW), p. 884.
SIGIRSIGIR-2008-SongZLZLLG #automation #realtime
Real-time automatic tag recommendation (YS, ZZ, HL, QZ, JL, WCL, CLG), pp. 515–522.
SIGIRSIGIR-2008-ZhangZL #algorithm #rank #topic
A topical PageRank based algorithm for recommender systems (LZ, KZ, CL), pp. 713–714.
RERE-2008-Castro-HerreraDCM #data mining #elicitation #mining #process #requirements #scalability #using
Using Data Mining and Recommender Systems to Facilitate Large-Scale, Open, and Inclusive Requirements Elicitation Processes (CCH, CD, JCH, BM), pp. 165–168.
ASEASE-2008-ZhangGC #analysis #automation #clustering
Automated Aspect Recommendation through Clustering-Based Fan-in Analysis (DZ, YG, XC), pp. 278–287.
ICSEICSE-2008-DagenaisR #adaptation #evolution #framework
Recommending adaptive changes for framework evolution (BD, MPR), pp. 481–490.
SACSAC-2008-LathiaHC #community #correlation
The effect of correlation coefficients on communities of recommenders (NL, SH, LC), pp. 2000–2005.
SACSAC-2008-LohLSWO #keyword #representation #taxonomy
Comparing keywords and taxonomies in the representation of users profiles in a content-based recommender system (SL, FL, GS, LKW, JPMdO), pp. 2030–2034.
SACSAC-2008-TaghipourK #hybrid #web
A hybrid web recommender system based on Q-learning (NT, AAK), pp. 1164–1168.
SACSAC-2008-Tso-SutterMS #algorithm #collaboration
Tag-aware recommender systems by fusion of collaborative filtering algorithms (KHLTS, LBM, LST), pp. 1995–1999.
SACSAC-2008-VictorCTC #trust
Whom should I trust?: the impact of key figures on cold start recommendations (PV, CC, AT, MDC), pp. 2014–2018.
ASPLOSASPLOS-2008-McCunePPRS #execution #how
How low can you go?: recommendations for hardware-supported minimal TCB code execution (JMM, BP, AP, MKR, AS), pp. 14–25.
TPDLECDL-2007-Neumann #interactive
Motivating and Supporting User Interaction with Recommender Systems (AWN), pp. 428–439.
HTHT-2007-BradshawL
Annotation consensus: implications for passage recommendation in scientific literature (SB, ML), pp. 209–216.
JCDLJCDL-2007-PohlRJ #library
Recommending related papers based on digital library access records (SP, FR, TJ), pp. 417–418.
JCDLJCDL-2007-SanchezAV #library #resource management
Induced tagging: promoting resource discovery and recommendation in digital libraries (JAS, AAP, OV), pp. 396–397.
JCDLJCDL-2007-ShimboIM #analysis #evaluation #kernel #metric #research
Evaluation of kernel-based link analysis measures on research paper recommendation (MS, TI, YM), pp. 354–355.
MSRMSR-2007-MintoM
Recommending Emergent Teams (SM, GCM), p. 5.
HCIHCI-MIE-2007-KoLKJL #case study #evaluation #personalisation #user satisfaction
A Study on User Satisfaction Evaluation About the Recommendation Techniques of a Personalized EPG System on Digital TV (SMK, YJL, MHK, YGJ, SWL), pp. 909–917.
HCIHCI-MIE-2007-OkadaI #collaboration #evaluation
Evaluation of P2P Information Recommendation Based on Collaborative Filtering (HO, MI), pp. 449–458.
HCIHIMI-MTT-2007-OrimoKMT #analysis #evaluation
Analysis and Evaluation of Recommendation Systems (EO, HK, TM, AT), pp. 144–152.
CAiSECAiSE-2007-StirnaPS #case study #enterprise #experience #modelling
Participative Enterprise Modeling: Experiences and Recommendations (JS, AP, KS), pp. 546–560.
ICEISICEIS-EIS-2007-SandkuhlOSSK #case study #experience #industrial #ontology
Ontology Construction in Practice — Experiences and Recommendations from Industrial Cases (KS, , AVS, NS, AK), pp. 250–256.
ICEISICEIS-HCI-2007-MelguizoBDBB #memory management #what
What a Proactive Recommendation System Needs — Relevance, Non-Intrusiveness, and a New Long-Term Memory (MCPM, TB, AD, LB, AvdB), pp. 86–91.
ICEISICEIS-HCI-2007-UchyigitCC #2d #named #user interface
KEXPLORATOR — A 2D Map Exploration User Interface for Recommender Systems (GU, KLC, DC), pp. 223–228.
ICEISICEIS-SAIC-2007-DrumondGL #case study #modelling #specification
A Case Study on the Application of the MAAEM Methodology for the Specification Modeling of Recommender Systems in the Legal Domain (LD, RG, AL), pp. 155–160.
ICEISICEIS-SAIC-2007-LazanasKK #hybrid #policy #web #web service
Applying Hybrid Recommendation Policies through Agent-Invoked Web Services in E-Markets (AL, NIK, VK), pp. 161–166.
ECIRECIR-2007-CastagnosB #community #distributed #personalisation
Personalized Communities in a Distributed Recommender System (SC, AB), pp. 343–355.
KDDKDD-2007-BellKV #modelling #multi #scalability
Modeling relationships at multiple scales to improve accuracy of large recommender systems (RMB, YK, CV), pp. 95–104.
KDDKDD-2007-DingSJL #framework #kernel #learning #using
A learning framework using Green’s function and kernel regularization with application to recommender system (CHQD, RJ, TL, HDS), pp. 260–269.
KDDKDD-2007-Schickel-ZuberF #clustering #learning #using
Using hierarchical clustering for learning theontologies used in recommendation systems (VSZ, BF), pp. 599–608.
RecSysRecSys-2007-BogersB #algorithm #information retrieval
Comparing and evaluating information retrieval algorithms for news recommendation (TB, AvdB), pp. 141–144.
RecSysRecSys-2007-BridgeR #editing #query
Supporting product selection with query editing recommendations (DGB, FR), pp. 65–72.
RecSysRecSys-2007-ChenP #evaluation #hybrid
The evaluation of a hybrid critiquing system with preference-based recommendations organization (LC, PP), pp. 169–172.
RecSysRecSys-2007-Donaldson #hybrid #music
A hybrid social-acoustic recommendation system for popular music (JD), pp. 187–190.
RecSysRecSys-2007-FreyneFC #data access #social #towards
Toward the exploitation of social access patterns for recommendation (JF, RF, MC), pp. 179–182.
RecSysRecSys-2007-HarperSF #clustering #social
Supporting social recommendations with activity-balanced clustering (FMH, SS, DF), pp. 165–168.
RecSysRecSys-2007-LeinoR
Case amazon: ratings and reviews as part of recommendations (JL, KJR), pp. 137–140.
RecSysRecSys-2007-LiDEL #probability
A probabilistic model for item-based recommender systems (ML, MBD, WED, PJGL), pp. 129–132.
RecSysRecSys-2007-Lorenzi #approach #knowledge-based #maintenance #multi
A multiagent knowledge-based recommender approach with truth maintenance (FL), pp. 195–198.
RecSysRecSys-2007-MassaA #trust
Trust-aware recommender systems (PM, PA), pp. 17–24.
RecSysRecSys-2007-McCarthy #challenge #physics
The challenges of recommending digital selves in physical spaces (JFM), pp. 185–186.
RecSysRecSys-2007-NathansonBG #adaptation #clustering #using
Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering (TN, EB, KYG), pp. 149–152.
RecSysRecSys-2007-NguyenDB #induction #rule-based
Improving new user recommendations with rule-based induction on cold user data (ATN, ND, CB), pp. 121–128.
RecSysRecSys-2007-NguyenR #evaluation #game studies #interactive #mobile
Replaying live-user interactions in the off-line evaluation of critique-based mobile recommendations (QNN, FR), pp. 81–88.
RecSysRecSys-2007-OMahonyS #online
A recommender system for on-line course enrolment: an initial study (MPO, BS), pp. 133–136.
RecSysRecSys-2007-PronkVPT #classification #naive bayes
Incorporating user control into recommender systems based on naive bayesian classification (VP, WFJV, AP, MT), pp. 73–80.
RecSysRecSys-2007-ResnickS
The influence limiter: provably manipulation-resistant recommender systems (PR, RS), pp. 25–32.
RecSysRecSys-2007-SandvigMB #collaboration #mining #robust
Robustness of collaborative recommendation based on association rule mining (JJS, BM, RDB), pp. 105–112.
RecSysRecSys-2007-TaghipourKG #approach #learning #web
Usage-based web recommendations: a reinforcement learning approach (NT, AAK, SSG), pp. 113–120.
RecSysRecSys-2007-TiemannP #hybrid #learning #music #towards
Towards ensemble learning for hybrid music recommendation (MT, SP), pp. 177–178.
RecSysRecSys-2007-Tintarev
Explanations of recommendations (NT), pp. 203–206.
RecSysRecSys-2007-TintarevM #design #effectiveness
Effective explanations of recommendations: user-centered design (NT, JM), pp. 153–156.
RecSysRecSys-2007-UmyarovT
Leveraging aggregate ratings for better recommendations (AU, AT), pp. 161–164.
RecSysRecSys-2007-ViappianiPF #adaptation
Conversational recommenders with adaptive suggestions (PV, PP, BF), pp. 89–96.
RecSysRecSys-2007-WebsterV
The keepup recommender system (AW, JV), pp. 173–176.
RecSysRecSys-2007-WinterboerM
Evaluating information presentation strategies for spoken recommendations (AW, JDM), pp. 157–160.
RecSysRecSys-2007-ZhangP #algorithm #collaboration #predict #recursion
A recursive prediction algorithm for collaborative filtering recommender systems (JZ, PP), pp. 57–64.
SIGIRSIGIR-2007-MeiYHYYL #named #online #video
VideoReach: an online video recommendation system (TM, BY, XSH, LY, SQY, SL), pp. 767–768.
SIGIRSIGIR-2007-StrohmanCJ
Recommending citations for academic papers (TS, WBC, DJ), pp. 705–706.
SIGIRSIGIR-2007-ZhangK #modelling #performance
Efficient bayesian hierarchical user modeling for recommendation system (YZ, JK), pp. 47–54.
ESEC-FSEESEC-FSE-2007-SaulFDB #random
Recommending random walks (ZMS, VF, PTD, CB), pp. 15–24.
SACSAC-2007-BirukouBDGKM #approach #development #named
IC-service: a service-oriented approach to the development of recommendation systems (AB, EB, VD, PG, NK, AM), pp. 1683–1688.
SACSAC-2007-RuffoS #peer-to-peer
Evaluating peer-to-peer recommender systems that exploit spontaneous affinities (GR, RS), pp. 1574–1578.
CHICHI-2006-BonhardHMS #similarity #using
Accounting for taste: using profile similarity to improve recommender systems (PB, CH, JDM, MAS), pp. 1057–1066.
CSCWCSCW-2006-McNeeKK #research
Don’t look stupid: avoiding pitfalls when recommending research papers (SMM, NK, JAK), pp. 171–180.
ICEISICEIS-SAIC-2006-LazanasKP #framework #platform #transaction
Providing Recommendations in an Agent-Based Transportation Transactions Management Platform (AL, NIK, YP), pp. 87–92.
KDDKDD-2006-BurkeMWB #classification #collaboration #detection
Classification features for attack detection in collaborative recommender systems (RDB, BM, CW, RB), pp. 542–547.
KDDKDD-2006-IwataSY
Recommendation method for extending subscription periods (TI, KS, TY), pp. 574–579.
KDDKDD-2006-ParkPMGD #robust
Naïve filterbots for robust cold-start recommendations (STP, DP, OM, NG, DD), pp. 699–705.
KDDKDD-2006-ZhangCFM #detection
Attack detection in time series for recommender systems (SZ, AC, JF, FM), pp. 809–814.
SEKESEKE-2006-CazellaA #architecture #data mining #mining #multi #research
An architecture based on multi-agent system and data mining for recommending research papers and researchers (SCC, LOCA), pp. 67–72.
SIGIRSIGIR-2006-SongTLS #data flow #personalisation
Personalized recommendation driven by information flow (XS, BLT, CYL, MTS), pp. 509–516.
SIGIRSIGIR-2006-ZhangOFM #analysis #linear
Analysis of a low-dimensional linear model under recommendation attacks (SZ, YO, JF, FM), pp. 517–524.
SACSAC-2006-BaragliaLOSS #privacy #web
A privacy preserving web recommender system (RB, CL, SO, MS, FS), pp. 559–563.
SACSAC-2006-HessSS #documentation #personalisation
Trust-enhanced visibility for personalized document recommendations (CH, KS, CS), pp. 1865–1869.
SACSAC-2006-NikovskiK #induction #personalisation
Induction of compact decision trees for personalized recommendation (DN, VK), pp. 575–581.
SACSAC-2006-RothF #information management
Trust-decisions on the base of maximal information of recommended direct-trust (UR, VF), pp. 1898–1901.
SACSAC-2006-ZankerG
Recommendation-based browsing assistance for corporate knowledge portals (MZ, SG), pp. 1116–1117.
SIGMODSIGMOD-2005-ConsensBTM #benchmark #metric
Goals and Benchmarks for Autonomic Configuration Recommenders (MPC, DB, AMT, LM), pp. 239–250.
ICEISICEIS-v4-2005-FoussFKPS #web
Web Recommendation System Based on a Markov-Chainmodel (FF, SF, MK, AP, MS), pp. 56–63.
CIKMCIKM-2005-HanK
Feature-based recommendation system (EHH, GK), pp. 446–452.
KDDKDD-2005-JinZM #collaboration #web
A maximum entropy web recommendation system: combining collaborative and content features (XJ, YZ, BM), pp. 612–617.
SEKESEKE-2005-FelfernigG #development #effectiveness #knowledge-based #process
AI Technologies Supporting Effective Development Processes for Knowledge-based Recommender Applications (AF, SG), pp. 372–379.
SEKESEKE-2005-LienT #network #web
A Web Pages Recommender with Bayesian Networks (CCL, HLT), pp. 82–87.
SEKESEKE-2005-TsunodaKOMM #collaboration #java #named
Javawock: A Java Class Recommender System Based on Collaborative Filtering (MT, TK, NO, AM, KiM), pp. 491–497.
SIGIRSIGIR-2005-CanoKW #music
An industrial-strength content-based music recommendation system (PC, MK, NW), p. 673.
ESEC-FSEESEC-FSE-2005-HolmesWM
Strathcona example recommendation tool (RH, RJW, GCM), pp. 237–240.
ICSEICSE-2005-HolmesM #source code #using
Using structural context to recommend source code examples (RH, GCM), pp. 117–125.
SACSAC-2005-AvesaniMT
A trust-enhanced recommender system application: Moleskiing (PA, PM, RT), pp. 1589–1593.
SACSAC-2005-Moloney #distributed #network #pervasive #simulation
Simulation of a distributed recommendation system for pervasive networks (SM), pp. 1577–1581.
TPDLECDL-2004-TangM #documentation
Laws of Attraction: In Search of Document Value-ness for Recommendation (TYT, GIM), pp. 269–280.
VLDBVLDB-2004-ThorR #adaptation #named
AWESOME — A Data Warehouse-based System for Adaptive Website Recommendations (AT, ER), pp. 384–395.
ICEISICEIS-v2-2004-BaykalAP #automation #reasoning
Automated Product Recommendation by Employing Case-Based Reasoning Agents (MÖB, RA, FP), pp. 515–518.
ICEISICEIS-v3-2004-MontanerLR #evaluation
Evaluation of Recommender Systems Through Simulated Users (MM, BL, JLdlR), pp. 303–308.
ICEISICEIS-v4-2004-DegemmisLSCLG #collaboration #hybrid
A Hybrid Collaborative Recommender System Based on User Profiles (MD, PL, GS, MFC, OL, SG), pp. 162–169.
ICEISICEIS-v4-2004-KaracapilidisL #framework #online
A Recommendation Based Framework for Online Product Configuration (NIK, TL), pp. 303–308.
ICEISICEIS-v4-2004-LohGLBRSAP #chat #library #web
Analyzing Web Chat Messages for Recommending Items from a Digital Library (SL, RSG, DL, TB, RR, GS, LA, TP), pp. 41–48.
ICEISICEIS-v5-2004-GonzalezLR #modelling
Managing Emotions in Smart User Models for Recommender Systems (GG, BL, JLdlR), pp. 187–194.
ICEISICEIS-v5-2004-PluAVM #social #social media
A Contact Recommender System for a Mediated Social Media (MP, LA, LV, JCM), pp. 107–114.
CIKMCIKM-2004-JungHWH #named
SERF: integrating human recommendations with search (SJ, KH, JW, JLH), pp. 571–580.
CIKMCIKM-2004-ZieglerLS
Taxonomy-driven computation of product recommendations (CNZ, GL, LST), pp. 406–415.
KDDKDD-2004-AliS #architecture #collaboration #distributed #named #using
TiVo: making show recommendations using a distributed collaborative filtering architecture (KA, WvS), pp. 394–401.
SIGIRSIGIR-2004-LiKGO #music
A music recommender based on audio features (QL, BMK, DG, DwO), pp. 532–533.
SIGIRSIGIR-2004-UpstillR #web
Exploiting hyperlink recommendation evidence in navigational web search (TU, SER), pp. 576–577.
SACSAC-2004-StraubH #mobile
An anonymous bonus point system for mobile commerce based on word-of-mouth recommendation (TS, AH), pp. 766–773.
TPDLECDL-2003-Geyer-SchulzNT #library #robust
Others Also Use: A Robust Recommender System for Scientific Libraries (AGS, AWN, AT), pp. 113–125.
HTHT-2003-MacedoTCP #automation #case study #experience #web
Automatically sharing web experiences through a hyperdocument recommender system (AAM, KNT, JACG, MdGCP), pp. 48–56.
CHICHI-2003-CosleyLAKR #how #interface
Is seeing believing?: how recommender system interfaces affect users’ opinions (DC, SKL, IA, JAK, JR), pp. 585–592.
CHICHI-2003-McDonald #collaboration #comparative #evaluation #network #social
Recommending collaboration with social networks: a comparative evaluation (DWM), pp. 593–600.
ICEISICEIS-v2-2003-WangRLC #mining #online #realtime #web
Mining Web Usage Data for Real-Time Online Recommendation (MW, SJR, SYL, JKYC), pp. 575–578.
ICEISICEIS-v4-2003-LiKM #architecture #automation #e-commerce #multi
Multi-Agent Architecture for Automatic Recommendation System in E-Commerce (QL, RK, YM), pp. 265–270.
ECIRECIR-2003-TianC #collaboration #learning #rating #similarity
Learning User Similarity and Rating Style for Collaborative Recommendation (LFT, KWC), pp. 135–145.
KDDKDD-2003-Kamishima #collaboration #order
Nantonac collaborative filtering: recommendation based on order responses (TK), pp. 583–588.
ICSEICSE-2003-CubranicM #development #named
Hipikat: Recommending Pertinent Software Development Artifacts (DC, GCM), pp. 408–418.
JCDLJCDL-2002-HuangCOC #graph #library
A graph-based recommender system for digital library (ZH, WC, THO, HC), pp. 65–73.
VLDBVLDB-2002-CosleyLP #framework #named #testing #using
REFEREE: An Open Framework for Practical Testing of Recommender Systems using ResearchIndex (DC, SL, DMP), pp. 35–46.
CSCWCSCW-2002-McNeeACGLRKR #on the #research
On the recommending of citations for research papers (SMM, IA, DC, PG, SKL, AMR, JAK, JR), pp. 116–125.
CAiSECAiSE-2002-PapadopoulosP #community #semantics
The Role of Semantic Relevance in Dynamic User Community Management and the Formulation of Recommendations (NP, DP), pp. 200–215.
CIKMCIKM-2002-SchaferKR #integration
Meta-recommendation systems: user-controlled integration of diverse recommendations (JBS, JAK, JR), pp. 43–51.
SIGIRSIGIR-2002-ScheinPUP #metric
Methods and metrics for cold-start recommendations (AIS, AP, LHU, DMP), pp. 253–260.
STOCSTOC-2002-DrineasKR
Competitive recommendation systems (PD, IK, PR), pp. 82–90.
TPDLECDL-2001-KimK #documentation #modelling #web
Dynamic Models of Expert Groups to Recommend Web Documents (DK, SWK), pp. 275–286.
JCDLJCDL-2001-GeislerMG #library #nondeterminism
Developing recommendation services for a digital library with uncertain and changing data (GG, DM, SG), pp. 199–200.
CIKMCIKM-2001-ChenC #music
A Music Recommendation System Based on Music Data Grouping and User Interests (HCC, ALPC), pp. 231–238.
CIKMCIKM-2001-Karypis #algorithm #evaluation
Evaluation of Item-Based Top-N Recommendation Algorithms (GK), pp. 247–254.
ICMLICML-2001-Lee #collaboration #learning
Collaborative Learning and Recommender Systems (WSL), pp. 314–321.
KDDKDD-2001-Riedl #community
Recommender systems in commerce and community (JR), p. 15.
DL-2000-MooneyR #categorisation #learning #using
Content-based book recommending using learning for text categorization (RJM, LR), pp. 195–204.
TPDLECDL-2000-BollenR #adaptation #approach #evaluation #implementation #library
An Adaptive Systems Approach to the Implementation and Evaluation of Digital Library Recommendation Systems (JB, LMR), pp. 356–359.
CHICHI-2000-WoodruffGPCC
Enhancing a digital book with a reading recommender (AW, RG, JEP, EHhC, SKC), pp. 153–160.
CSCWCSCW-2000-HerlockerKR #collaboration
Explaining collaborative filtering recommendations (JLH, JAK, JR), pp. 241–250.
CSCWCSCW-2000-McDonaldA #architecture #flexibility
Expertise recommender: a flexible recommendation system and architecture (DWM, MSA), pp. 231–240.
CIKMCIKM-2000-LavrenkoSLOJA #modelling
Language Models for Financial News Recommendation (VL, MDS, DL, PO, DJ, JA), pp. 389–396.
KDDKDD-2000-KittsFV #independence #named #performance
Cross-sell: a fast promotion-tunable customer-item recommendation method based on conditionally independent probabilities (BK, DF, MV), pp. 437–446.
DL-1999-Rocha #adaptation
TalkMine and the Adaptive Recommendation Project (LMR), pp. 242–243.
CSEETCSEET-1999-Tockey
Recommended Skills and Knowledge for Software Engineers (SRT), pp. 168–176.
HCIHCI-CCAD-1999-TrousseJK #approach #behaviour #similarity #using
Using user behaviour similarity for recommendation computation: the broadway approach (BT, MJ, RK), pp. 85–89.
ITiCSEITiCSE-WGR-1997-JoyceKGKKLLSW #design #guidelines #repository
Developing laboratories for the SIGCSE computing laboratory repository: guidelines, recommendations, and sample labs (report of the ITiCSE 1997 working group on designing laboratory materials for computing courses) (DTJ, DK, JGP, EBK, WK, CL, KL, ES, RAW), pp. 1–12.
CHICHI-1995-HillSRF #community
Recommending and Evaluating Choices in a Virtual Community of Use (WCH, LS, MR, GWF), pp. 194–201.
AdaEuropeAdaEurope-1994-Gale #ada #development
Recommendations and Proposals for an Ada Strategy in the Space Software Development Environment (LPG), pp. 175–203.
CSEETSEI-1992-MedairosCCK #re-engineering
Software Engineering Course Projects: Failures and Recommendations (SM, KWC, JSC, MK), pp. 324–338.
CHICHI-1992-WhartonBJF #case study #experience #user interface
Applying cognitive walkthroughs to more complex user interfaces: experiences, issues, and recommendations (CW, JB, RJ, MF), pp. 381–388.
SIGIRSIGIR-1983-Somers #analysis #file system #user interface
The User View of File Management: Recommendations for a User Interface Based in an Analysis of UNIX File System Use (PS), p. 161.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.