Travelled to:
1 × Germany
1 × Ireland
1 × Italy
1 × Russia
11 × USA
2 × Canada
2 × United Kingdom
4 × France
Collaborated with:
X.Zhang H.Yang R.Mangal P.Liang A.Aiken K.Sen J.Palsberg X.Si D.Gay A.V.Nori P.Joshi C.Park K.Heo M.Sagiv R.Grigore M.Raghothaman O.Tripp Sulekha Kulkarni G.Castelnuovo W.Lee A.X.Zheng M.I.Jordan B.Liblit A.Machiry R.Tahiliani Z.R.Anderson J.Whaley T.Ball S.K.Rajamani S.Anand M.J.Harrold R.Alur J.Park H.Esmaeilzadeh W.Harris N.Rinetzky A.Aiken Jonathan Mendelson David Zhao B.Scholz R.Zhang A.Albarghouthi P.Koutris
Talks about:
program (12) analysi (9) abstract (6) static (5) detect (5) guid (5) effect (4) synthesi (3) deadlock (3) datalog (3)
Person: Mayur Naik
DBLP: Naik:Mayur
Contributed to:
Wrote 35 papers:
- ESEC-FSE-2015-MangalZNN #approach #program analysis
- A user-guided approach to program analysis (RM, XZ, AVN, MN), pp. 462–473.
- ESEC-FSE-2015-ParkEZNH #approximate #composition #named #programming
- FlexJava: language support for safe and modular approximate programming (JP, HE, XZ, MN, WH), pp. 745–757.
- SAS-2015-CastelnuovoNRSY #analysis #bottom-up #case study #composition #top-down
- Modularity in Lattices: A Case Study on the Correspondence Between Top-Down and Bottom-Up Analysis (GC, MN, NR, MS, HY), pp. 252–274.
- SAT-2015-MangalZNN #framework #lazy evaluation #named #satisfiability #scalability
- Volt: A Lazy Grounding Framework for Solving Very Large MaxSAT Instances (RM, XZ, AVN, MN), pp. 299–306.
- ESOP-2014-MangalNY #analysis #interprocedural
- A Correspondence between Two Approaches to Interprocedural Analysis in the Presence of Join (RM, MN, HY), pp. 513–533.
- PLDI-2014-ZhangMGNY #abstraction #analysis #datalog #on the #refinement
- On abstraction refinement for program analyses in Datalog (XZ, RM, RG, MN, HY), p. 27.
- PLDI-2014-ZhangMNY #analysis #bottom-up #hybrid #interprocedural #top-down
- Hybrid top-down and bottom-up interprocedural analysis (XZ, RM, MN, HY), p. 28.
- ESEC-FSE-2013-MachiryTN #android #generative #named
- Dynodroid: an input generation system for Android apps (AM, RT, MN), pp. 224–234.
- PLDI-2013-ZhangNY #abstraction #analysis #data flow #parametricity
- Finding optimum abstractions in parametric dataflow analysis (XZ, MN, HY), pp. 365–376.
- FSE-2012-AnandNHY #automation #smarttech #testing
- Automated concolic testing of smartphone apps (SA, MN, MJH, HY), p. 59.
- POPL-2012-NaikYCS #abstraction #testing
- Abstractions from tests (MN, HY, GC, MS), pp. 373–386.
- PLDI-2011-LiangN #abstraction #refinement #scalability
- Scaling abstraction refinement via pruning (PL, MN), pp. 590–601.
- POPL-2011-LiangTN #abstraction #learning
- Learning minimal abstractions (PL, OT, MN), pp. 31–42.
- FSE-2010-JoshiNSG #detection #dynamic analysis #effectiveness
- An effective dynamic analysis for detecting generalized deadlocks (PJ, MN, KS, DG), pp. 327–336.
- OOPSLA-2010-LiangTNS #abstraction #evaluation #precise
- A dynamic evaluation of the precision of static heap abstractions (PL, OT, MN, MS), pp. 411–427.
- CAV-2009-JoshiNPS #concurrent #framework #named #source code #testing
- CalFuzzer: An Extensible Active Testing Framework for Concurrent Programs (PJ, MN, CSP, KS), pp. 675–681.
- ICSE-2009-NaikPSG #concurrent #detection #effectiveness
- Effective static deadlock detection (MN, CSP, KS, DG), pp. 386–396.
- PLDI-2009-AndersonGN #concurrent #data type #lightweight
- Lightweight annotations for controlling sharing in concurrent data structures (ZRA, DG, MN), pp. 98–109.
- PLDI-2009-JoshiPSN #detection #program analysis #random
- A randomized dynamic program analysis technique for detecting real deadlocks (PJ, CSP, KS, MN), pp. 110–120.
- POPL-2007-NaikA #alias #concurrent #detection
- Conditional must not aliasing for static race detection (MN, AA), pp. 327–338.
- ICML-2006-ZhengJLNA #debugging #identification #multi #statistics
- Statistical debugging: simultaneous identification of multiple bugs (AXZ, MIJ, BL, MN, AA), pp. 1105–1112.
- PLDI-2006-NaikAW #concurrent #detection #effectiveness #java
- Effective static race detection for Java (MN, AA, JW), pp. 308–319.
- ESOP-2005-NaikP #model checking #type system
- A Type System Equivalent to a Model Checker (MN, JP), pp. 374–388.
- PLDI-2005-LiblitNZAJ #debugging #scalability #statistics
- Scalable statistical bug isolation (BL, MN, AXZ, AA, MIJ), pp. 15–26.
- POPL-2003-BallNR #fault
- From symptom to cause: localizing errors in counterexample traces (TB, MN, SKR), pp. 97–105.
- LCTES-SCOPES-2002-NaikP #compilation #constraints
- Compiling with code-size constraints (MN, JP), pp. 120–129.
- ESEC-FSE-2018-SiLZAKN #datalog #source code #synthesis
- Syntax-guided synthesis of Datalog programs (XS, WL, RZ, AA, PK, MN), pp. 515–527.
- CAV-2017-SiZGN #analysis #satisfiability
- Maximum Satisfiability in Software Analysis: Applications and Techniques (XS, XZ, RG, MN), pp. 68–94.
- OOPSLA-2016-KulkarniMZN #analysis
- Accelerating program analyses by cross-program training (SK, RM, XZ, MN), pp. 359–377.
- OOPSLA-2017-ZhangGSN #effectiveness #interactive #static analysis
- Effective interactive resolution of static analysis alarms (XZ, RG, XS, MN), p. 30.
- POPL-2016-ZhangMNN #satisfiability
- Query-guided maximum satisfiability (XZ, RM, AVN, MN), pp. 109–122.
- PLDI-2018-LeeHAN #modelling #probability #search-based #synthesis #using
- Accelerating search-based program synthesis using learned probabilistic models (WL, KH, RA, MN), pp. 436–449.
- PLDI-2018-RaghothamanKHN #reasoning #using
- User-guided program reasoning using Bayesian inference (MR, SK, KH, MN), pp. 722–735.
- PLDI-2019-HeoRSN #difference #reasoning #source code #using
- Continuously reasoning about programs using differential Bayesian inference (KH, MR, XS, MN), pp. 561–575.
- POPL-2020-RaghothamanMZNS #datalog #source code #synthesis
- Provenance-guided synthesis of Datalog programs (MR, JM, DZ, MN, BS), p. 27.