Travelled to:
1 × Canada
1 × United Kingdom
17 × USA
2 × Italy
Collaborated with:
E.J.Keogh C.Brunk ∅ P.M.Murphy S.D.Bay W.Sarrett G.Silverstein C.Mesterharm S.Hettich D.Billsus P.M.Domingos C.J.Merz D.S.Hirschberg S.Chu S.Mani W.R.Shankle T.Yamazaki G.Semeraro F.Esposito D.Malerba Y.Ge H.Xiong A.Tuzhilin K.Xiao M.Gruteser K.M.Ali T.Hume
Talks about:
learn (14) algorithm (4) relat (4) base (4) approach (3) concept (3) theori (3) time (3) data (3) case (3)
Person: Michael J. Pazzani
DBLP: Pazzani:Michael_J=
Contributed to:
Wrote 27 papers:
- KDD-2011-MesterharmP #algorithm #learning #online #using
- Active learning using on-line algorithms (CM, MJP), pp. 850–858.
- KDD-2010-GeXTXGP #energy #mobile #recommendation
- An energy-efficient mobile recommender system (YG, HX, AT, KX, MG, MJP), pp. 899–908.
- KDD-2006-HettichP #lessons learnt #mining
- Mining for proposal reviewers: lessons learned at the national science foundation (SH, MJP), pp. 862–871.
- KDD-2001-KeoghCP #approach #database #named #scalability
- Ensemble-index: a new approach to indexing large databases (EJK, SC, MJP), pp. 117–125.
- ICML-2000-BayP #difference
- Characterizing Model Erros and Differences (SDB, MJP), pp. 49–56.
- KDD-2000-KeoghP #scalability
- Scaling up dynamic time warping for datamining applications (EJK, MJP), pp. 285–289.
- KDD-1999-BayP #category theory #data mining #detection #mining #set
- Detecting Change in Categorical Data: Mining Contrast Sets (SDB, MJP), pp. 302–306.
- SIGIR-1999-KeoghP #feedback #retrieval
- Relevance Feedback Retrieval of Time Series Data (EJK, MJP), pp. 183–190.
- ICML-1998-BillsusP #collaboration #learning
- Learning Collaborative Information Filters (DB, MJP), pp. 46–54.
- KDD-1998-KeoghP #classification #clustering #feedback #performance #representation
- An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback (EJK, MJP), pp. 239–243.
- KDD-1997-PazzaniMS #learning
- Beyond Concise and Colorful: Learning Intelligible Rules (MJP, SM, WRS), pp. 235–238.
- ICML-1996-DomingosP #classification #independence
- Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier (PMD, MJP), pp. 105–112.
- ICML-1995-BrunkP #bias #semantics
- A Lexical Based Semantic Bias for Theory Revision (CB, MJP), pp. 81–89.
- ICML-1995-YamazakiPM #ambiguity #learning #natural language
- Learning Hierarchies from Ambiguous Natural Language Data (TY, MJP, CJM), pp. 575–583.
- KDD-1995-Pazzani #approach #classification
- An Iterative Improvement Approach for the Discretization of Numeric Attributes in Bayesian Classifiers (MJP), pp. 228–233.
- ICML-1994-MurphyP
- Revision of Production System Rule-Bases (PMM, MJP), pp. 199–207.
- ICML-1994-PazzaniMMAHB #classification
- Reducing Misclassification Costs (MJP, CJM, PMM, KMA, TH, CB), pp. 217–225.
- LOPSTR-1994-SemeraroEMBP #case study #learning #logic #source code
- Avoiding Non-Termination when Learning Logical Programs: A Case Study with FOIL and FOCL (GS, FE, DM, CB, MJP), pp. 183–198.
- ML-1992-HirschbergP #analysis #concept #learning
- Average Case Analysis of Learning κ-CNF Concepts (DSH, MJP), pp. 206–211.
- ML-1991-BrunkP #algorithm #concept #learning #relational
- An Investigation of Noise-Tolerant Relational Concept Learning Algorithms (CB, MJP), pp. 389–393.
- ML-1991-MurphyP #induction
- Constructive Induction of M-of-N Terms (PMM, MJP), pp. 183–187.
- ML-1991-PazzaniBS #approach #concept #learning #relational
- A Knowledge-intensive Approach to Learning Relational Concepts (MJP, CB, GS), pp. 432–436.
- ML-1991-SilversteinP #induction #learning #relational
- Relational Clichés: Constraining Induction During Relational Learning (GS, MJP), pp. 203–207.
- ML-1990-PazzaniS #algorithm #analysis #learning
- Average Case Analysis of Conjunctive Learning Algorithms (MJP, WS), pp. 339–347.
- ML-1989-Pazzani #learning
- Explanation-Based Learning with Week Domain Theories (MJP), pp. 72–74.
- ML-1989-SarrettP #algorithm #empirical #learning
- One-Sided Algorithms for Integrating Empirical and Explanation-Based Learning (WS, MJP), pp. 26–28.
- ML-1988-Pazzani #learning
- Integrated Learning with Incorrect and Incomplete Theories (MJP), pp. 291–297.