Travelled to:
1 × Italy
1 × South Africa
1 × Spain
2 × Canada
2 × USA
Collaborated with:
P.Anbalagan M.Nagappan K.E.Boyer J.C.Lester P.V.Anderson M.Carter J.E.Burge G.C.Gannod M.Sherriff N.Nagappan L.A.Williams A.A.Dwight R.T.Fondren M.E.Hoffman W.E.Wong A.Bertolino V.Debroy A.P.Mathur J.Offutt R.Phillips E.Ha M.D.Wallis S.Heckman D.Wright
Talks about:
softwar (4) log (3) communic (2) model (2) time (2) mine (2) preliminari (1) repositori (1) instructor (1) experiment (1)
Person: Mladen A. Vouk
DBLP: Vouk:Mladen_A=
Contributed to:
Wrote 9 papers:
- ICSE-v2-2015-AndersonHVWCBG #student
- CS/SE Instructors Can Improve Student Writing without Reducing Class Time Devoted to Technical Content: Experimental Results (PVA, SH, MAV, DW, MC, JEB, GCG), pp. 455–464.
- CSEET-2011-CarterVGBAH #communication #education #re-engineering
- Communication genres: Integrating communication into the software engineering curriculum (MC, MAV, GCG, JEB, PVA, MEH), pp. 21–30.
- CSEET-2011-WongBDMOV #case study #education #experience #lessons learnt #testing
- Teaching software testing: Experiences, lessons learned and the path forward (WEW, AB, VD, APM, JO, MAV), pp. 530–534.
- EDM-2010-BoyerPHWVL #markov #modelling #tutorial
- A Preliminary Investigation of Hierarchical Hidden Markov Models for Tutorial Planning (KEB, RP, EH, MDW, MAV, JCL), pp. 285–286.
- MSR-2010-NagappanV #mining
- Abstracting log lines to log event types for mining software system logs (MN, MAV), pp. 114–117.
- ICSM-2009-AnbalaganV #debugging #on the #open source #predict
- On predicting the time taken to correct bug reports in open source projects (PA, MAV), pp. 523–526.
- MSR-2009-AnbalaganV #mining #on the #repository
- On mining data across software repositories (PA, MAV), pp. 171–174.
- ITiCSE-2008-BoyerDFVL #collaboration #development #distributed #programming
- A development environment for distributed synchronous collaborative programming (KEB, AAD, RTF, MAV, JCL), pp. 158–162.
- A-MOST-2005-SherriffNWV #estimation #fault #haskell #metric #using
- Early estimation of defect density using an in-process Haskell metrics model (MS, NN, LAW, MAV), pp. 64–69.