23 papers:
KDD-2015-ZhaoJCJ #estimation #parametricity #performance #quality- SAME but Different: Fast and High Quality Gibbs Parameter Estimation (HZ, BJ, JFC, BJ), pp. 1495–1502.
CIKM-2014-LiZLW #classification #probability- Probabilistic Classifier Chain Inference via Gibbs Sampling (LL, LZ, GL, HW), pp. 1855–1858.
ECIR-2014-HoulsbyC #probability #scalability- A Scalable Gibbs Sampler for Probabilistic Entity Linking (NH, MC), pp. 335–346.
ICML-c2-2014-ToshD #bound- Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians (CT, SD), pp. 1467–1475.
KDD-2014-ChengL #equivalence #parallel #process- Parallel gibbs sampling for hierarchical dirichlet processes via gamma processes equivalence (DC, YL), pp. 562–571.
SIGMOD-2013-ZhangR #case study #scalability #towards- Towards high-throughput gibbs sampling at scale: a study across storage managers (CZ, CR), pp. 397–408.
ICML-c1-2013-ZhuCPZ #algorithm #modelling #performance #topic- Gibbs Max-Margin Topic Models with Fast Sampling Algorithms (JZ, NC, HP, BZ), pp. 124–132.
CASE-2011-LeH #analysis #random- Marginal analysis on binary pairwise Gibbs random fields (TL, CNH), pp. 316–321.
DAC-2011-DongL #performance #predict- Efficient SRAM failure rate prediction via Gibbs sampling (CD, XL), pp. 200–205.
HCI-DDA-2011-ShiraiT #composition #interactive #music #using- A Proposal of an Interactive Music Composition System Using Gibbs Sampler (AS, TT), pp. 490–497.
ICLP-2010-Fierens10 #logic #modelling #performance #probability- Improving the Efficiency of Gibbs Sampling for Probabilistic Logical Models by Means of Program Specialization (DF), pp. 74–83.
ICPR-2008-ZhouZ #metric- Generalized criteria for uniqueness of Gibbs measures (HZ, ZZ), pp. 1–4.
KDD-2008-PorteousNIASW #performance- Fast collapsed gibbs sampling for latent dirichlet allocation (IP, DN, ATI, AUA, PS, MW), pp. 569–577.
KDD-2008-WalkerR #clustering #documentation #modelling- Model-based document clustering with a collapsed gibbs sampler (DDW, EKR), pp. 704–712.
ICPR-v2-2006-El-BazFGA #image #robust- Robust Image Registration Based on Markov-Gibbs Appearance Model (AEB, AAF, GLG, AEAH), pp. 1204–1207.
ICML-2005-LavioletteM #bound #classification- PAC-Bayes risk bounds for sample-compressed Gibbs classifiers (FL, MM), pp. 481–488.
ICPR-v1-2002-ChenM #3d #image #integration #modelling #segmentation- Integration of Gibbs Prior Models and Deformable Models for 3D Medical Image Segmentation (TC, DNM), pp. 719–722.
ICML-2001-NgJ #classification #convergence #feature model- Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection (AYN, MIJ), pp. 377–384.
ICPR-v3-2000-Gimelfarb #estimation #image #interactive #modelling- Estimation of an Interaction Structure in Gibbs Image Modeling (GLG), pp. 3510–3513.
ICPR-1998-Gimelfarb #interactive #modelling #question #segmentation #what- Supervised segmentation by pairwise interactions: do Gibbs models learn what we expect? (GLG), pp. 817–819.
ICPR-1998-Gimelfarb98a #image #modelling #on the #random- On the maximum likelihood potential estimates for Gibbs random field image models (GLG), pp. 1598–1600.
ICPR-1996-Gimelfarb #interactive #multi- Non-Markov Gibbs texture model with multiple pairwise pixel interactions (GLG), pp. 591–595.
ICPR-1996-Gimelfarb96a #modelling #segmentation #simulation- Gibbs models for Bayesian simulation and segmentation of piecewise-uniform textures (GLG), pp. 760–764.