BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Cyprus
1 × Italy
1 × USA
2 × France
2 × Spain
4 × Portugal
Collaborated with:
F.Portela Á.M.Silva F.Rua A.Abelha J.Neves A.Azevedo F.Pinto P.Gago J.Machado J.P.Silva F.M.Pinto J.Pereira R.Teixeira F.Afonso B.C.d.S.Oliveira M.Vilas-Boas P.Cortez L.Gomes R.Veloso J.Aguiar
Talks about:
intens (6) mine (6) data (6) intellig (5) care (5) medicin (4) model (4) support (3) predict (3) system (3)

Person: Manuel Filipe Santos

DBLP DBLP: Santos:Manuel_Filipe

Contributed to:

KMIS 20142014
ICEIS v1 20132013
KDIR/KMIS 20132013
KMIS 20122012
KMIS 20112011
ICEIS AIDSS 20102010
KMIS 20092009
ICEIS AIDSS 20062006
ICEIS v2 20052005
ICEIS v2 20042004
ICEIS 20022002

Wrote 12 papers:

KMIS-2014-TeixeiraAOPS #case study #quality
Business Intelligence to Improve the Quality of Local Government Services — Case-study in a Local Government Town Hall (RT, FA, BCdSO, FP, MFS), pp. 153–160.
KMIS-2014-VelosoPSSRA0 #data mining #mining #modelling #predict #realtime
Real-Time Data Mining Models for Predicting Length of Stay in Intensive Care Units (RV, FP, MFS, ÁMS, FR, AA, JM), pp. 245–254.
ICEIS-v1-2013-AguiarPSMASRP #information management #pervasive
Pervasive Information Systems to Intensive Care Medicine — Technology Acceptance Model (JA, FP, MFS, JM, AA, ÁMS, FR, FP), pp. 177–184.
KDIR-KMIS-2013-SilvaPS #education
A Decision Support System for Portuguese Higher Education Course Selection — First Round (JPS, FP, MFS), pp. 360–367.
KMIS-2012-PortelaPS #data mining #mining #modelling #pervasive #predict
Data Mining Predictive Models for Pervasive Intelligent Decision Support in Intensive Care Medicine (FP, FP, MFS), pp. 81–88.
KMIS-2011-PortelaGSSRMAN #information management #pervasive #realtime
Knowledge Discovery for Pervasive and Real-time Intelligent Decision Support in Intensive Care Medicine (FP, PG, MFS, ÁMS, FR, JM, AA, JN), pp. 241–249.
ICEIS-AIDSS-2010-Vilas-BoasSPSR #data mining #mining #predict
Hourly Prediction of Organ Failure and Outcome in Intensive Care based on Data Mining Techniques (MVB, MFS, FP, ÁMS, FR), pp. 270–277.
KMIS-2009-AzevedoS #roadmap #state of the art
Business Intelligence — State of the Art, Trends, and Open Issues (AA, MFS), pp. 296–300.
ICEIS-AIDSS-2006-PintoGS #data mining #database #mining #paradigm
Data Mining as a New Paradigm for Business Intelligence in Database Marketing Projects (FMP, PG, MFS), pp. 144–149.
ICEIS-v2-2005-SantosPS #clustering #data mining #framework #mining #modelling
A Cluster Framework for Data Mining Models — An Application to Intensive Medicine (MFS, JP, ÁMS), pp. 163–168.
ICEIS-v2-2004-SilvaCSGN #multi #network #using
Multiple Organ Failure Diagnosis Using Adverse Events and Neural Networks (ÁMS, PC, MFS, LG, JN), pp. 401–408.
ICEIS-2002-SantosNASR #classification #data mining #database #learning #mining #using
Augmented Data Mining over Clinical Databases Using Learning Classifier Systems (MFS, JN, AA, ÁMS, FR), pp. 512–516.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.