Travelled to:
1 × Australia
1 × Sweden
2 × Canada
2 × China
5 × USA
Collaborated with:
T.Yamada K.Saito A.Fujino T.Iwata ∅ M.Inoue M.Blondel M.Nagata K.Aoyama H.Sawada Y.Sakurai M.Nakano K.Ishiguro A.Kimura Y.Baba H.Kashima Y.Nohara E.Kai P.P.Ghosh R.I.Maruf A.Ahmed M.Kuroda S.Inoue T.Hiramatsu M.Kimura S.Shimizu K.Kobayashi K.Tsuda M.Sugiyama M.Kitsuregawa N.Nakashima
Talks about:
model (3) similar (2) visual (2) topic (2) imag (2) data (2) use (2) neighborhood (1) rectangular (1) probabilist (1)
Person: Naonori Ueda
DBLP: Ueda:Naonori
Contributed to:
Wrote 11 papers:
- KDD-2015-BabaKNKGIAKIHKS #low cost #predict
- Predictive Approaches for Low-Cost Preventive Medicine Program in Developing Countries (YB, HK, YN, EK, PPG, RIM, AA, MK, SI, TH, MK, SS, KK, KT, MS, MB, NU, MK, NN), pp. 1681–1690.
- ICML-c2-2014-NakanoIKYU #process
- Rectangular Tiling Process (MN, KI, AK, TY, NU), pp. 361–369.
- ICPR-2014-BlondelFU #multi #scalability
- Large-Scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex (MB, AF, NU), pp. 1289–1294.
- KDD-2012-Ueda #data analysis #relational
- Bayesian relational data analysis (NU), p. 815.
- KDD-2011-AoyamaSSU #approximate #graph #performance #similarity
- Fast approximate similarity search based on degree-reduced neighborhood graphs (KA, KS, HS, NU), pp. 1055–1063.
- CIKM-2010-FujinoUN #classification #learning #robust
- A robust semi-supervised classification method for transfer learning (AF, NU, MN), pp. 379–388.
- KDD-2010-IwataYSU #modelling #multi #online #topic
- Online multiscale dynamic topic models (TI, TY, YS, NU), pp. 663–672.
- KDD-2008-IwataYU #documentation #probability #semantics #topic #visualisation
- Probabilistic latent semantic visualization: topic model for visualizing documents (TI, TY, NU), pp. 363–371.
- SAC-2005-InoueU #image #using
- Retrieving lightly annotated images using image similarities (MI, NU), pp. 1031–1037.
- ICML-2003-YamadaSU #network
- Cross-Entropy Directed Embedding of Network Data (TY, KS, NU), pp. 832–839.
- KDD-2002-UedaS #category theory #detection #modelling #multi #parametricity #using
- Single-shot detection of multiple categories of text using parametric mixture models (NU, KS), pp. 626–631.