Travelled to:
1 × Australia
1 × China
1 × Finland
1 × France
1 × Israel
1 × Japan
1 × Turkey
1 × United Kingdom
5 × USA
Collaborated with:
M.C.d.Plessis G.Niu H.Hachiya S.Nakajima B.Dai H.Kashima K.Ogawa I.Takeuchi M.Yamada A.Takeda N.Rubens ∅ A.Kimura H.Sakano H.Kameoka N.Xie S.D.Babacan K.Ueki Y.Ihara Kiyoshi Irie Masahiro Tomono S.Suzumura M.Imamura M.Kimura R.Tomioka T.Suzuki W.Jitkrittum T.Morimura T.Tanaka K.Yamazaki M.Kawanabe S.Watanabe K.Müller T.Nakano E.Maeda K.Ishiguro Y.Baba Y.Nohara E.Kai P.P.Ghosh R.I.Maruf A.Ahmed M.Kuroda S.Inoue T.Hiramatsu M.Kimura S.Shimizu K.Kobayashi K.Tsuda M.Blondel N.Ueda M.Kitsuregawa N.Nakashima
Talks about:
learn (10) supervis (6) semi (6) inform (4) distribut (3) bayesian (3) approach (3) regular (3) class (3) dimension (2)
Person: Masashi Sugiyama
DBLP: Sugiyama:Masashi
Contributed to:
Wrote 22 papers:
- ICML-2015-PlessisNS #learning
- Convex Formulation for Learning from Positive and Unlabeled Data (MCdP, GN, MS), pp. 1386–1394.
- KDD-2015-BabaKNKGIAKIHKS #low cost #predict
- Predictive Approaches for Low-Cost Preventive Medicine Program in Developing Countries (YB, HK, YN, EK, PPG, RIM, AA, MK, SI, TH, MK, SS, KK, KT, MS, MB, NU, MK, NN), pp. 1681–1690.
- ICML-c2-2014-NiuDPS #approximate #learning #multi
- Transductive Learning with Multi-class Volume Approximation (GN, BD, MCdP, MS), pp. 1377–1385.
- ICML-c2-2014-SuzumuraOST #algorithm #robust
- Outlier Path: A Homotopy Algorithm for Robust SVM (SS, KO, MS, IT), pp. 1098–1106.
- ICML-c3-2013-NiuJDHS #approach #learning #novel
- Squared-loss Mutual Information Regularization: A Novel Information-theoretic Approach to Semi-supervised Learning (GN, WJ, BD, HH, MS), pp. 10–18.
- ICML-c3-2013-OgawaITS
- Infinitesimal Annealing for Training Semi-Supervised Support Vector Machines (KO, MI, IT, MS), pp. 897–905.
- ICML-2012-NiuDYS #learning #metric
- Information-theoretic Semi-supervised Metric Learning via Entropy Regularization (GN, BD, MY, MS), p. 136.
- ICML-2012-PlessisS #learning
- Semi-Supervised Learning of Class Balance under Class-Prior Change by Distribution Matching (MCdP, MS), p. 159.
- ICML-2012-XieHS #approach #automation #generative #learning
- Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting (NX, HH, MS), p. 139.
- ICPR-2012-KimuraSKS #analysis #component #design
- Designing various component analysis at will (AK, HS, HK, MS), pp. 2959–2962.
- ICML-2011-NakajimaSB #automation #on the
- On Bayesian PCA: Automatic Dimensionality Selection and Analytic Solution (SN, MS, SDB), pp. 497–504.
- ICML-2011-SugiyamaYKH #clustering #on the #parametricity
- On Information-Maximization Clustering: Tuning Parameter Selection and Analytic Solution (MS, MY, MK, HH), pp. 65–72.
- ICML-2010-MorimuraSKHT #approximate #learning #parametricity
- Nonparametric Return Distribution Approximation for Reinforcement Learning (TM, MS, HK, HH, TT), pp. 799–806.
- ICML-2010-NakajimaS #matrix
- Implicit Regularization in Variational Bayesian Matrix Factorization (SN, MS), pp. 815–822.
- ICML-2010-TomiokaSSK #algorithm #learning #matrix #performance #rank
- A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices (RT, TS, MS, HK), pp. 1087–1094.
- ICPR-2010-KimuraKSNMSI #canonical #correlation #learning #named #performance
- SemiCCA: Efficient Semi-supervised Learning of Canonical Correlations (AK, HK, MS, TN, EM, HS, KI), pp. 2933–2936.
- ICPR-2010-UekiSI #adaptation #estimation
- Perceived Age Estimation under Lighting Condition Change by Covariate Shift Adaptation (KU, MS, YI), pp. 3400–3403.
- ICML-2008-TakedaS
- nu-support vector machine as conditional value-at-risk minimization (AT, MS), pp. 1056–1063.
- ICML-2007-YamazakiKWSM #fault
- Asymptotic Bayesian generalization error when training and test distributions are different (KY, MK, SW, MS, KRM), pp. 1079–1086.
- RecSys-2007-RubensS #collaboration #learning
- Influence-based collaborative active learning (NR, MS), pp. 145–148.
- ICML-2006-Sugiyama #analysis #reduction
- Local Fisher discriminant analysis for supervised dimensionality reduction (MS), pp. 905–912.
- CASE-2016-IrieST #dependence #using
- Target-less camera-LiDAR extrinsic calibration using a bagged dependence estimator (KI, MS, MT), pp. 1340–1347.