Tom Fawcett, Nina Mishra
Proceedings of the 20th International Conference on Machine Learning
ICML-2003, 2003.
@proceedings{ICML-2003, address = "Washington, District of Columbia, USA", editor = "Tom Fawcett and Nina Mishra", isbn = "1-57735-189-4", publisher = "{AAAI Press}", title = "{Proceedings of the 20th International Conference on Machine Learning}", year = 2003, }
Contents (117 items)
- ICML-2003-AltunTH #markov
- Hidden Markov Support Vector Machines (YA, IT, TH), pp. 3–10.
- ICML-2003-Bar-HillelHSW #distance #equivalence #learning #using
- Learning Distance Functions using Equivalence Relations (ABH, TH, NS, DW), pp. 11–18.
- ICML-2003-BaramEL #algorithm #learning #online
- Online Choice of Active Learning Algorithms (YB, REY, KL), pp. 19–26.
- ICML-2003-BerardiCEM #analysis #layout #learning #logic programming #source code
- Learning Logic Programs for Layout Analysis Correction (MB, MC, FE, DM), pp. 27–34.
- ICML-2003-Bi #multi #programming
- Multi-Objective Programming in SVMs (JB), pp. 35–42.
- ICML-2003-BiB #fault
- Regression Error Characteristic Curves (JB, KPB), pp. 43–50.
- ICML-2003-Bouckaert #algorithm #learning #testing
- Choosing Between Two Learning Algorithms Based on Calibrated Tests (RRB), pp. 51–58.
- ICML-2003-Brinker #learning
- Incorporating Diversity in Active Learning with Support Vector Machines (KB), pp. 59–66.
- ICML-2003-BrownW #ambiguity #composition #learning #network #using
- The Use of the Ambiguity Decomposition in Neural Network Ensemble Learning Methods (GB, JLW), pp. 67–74.
- ICML-2003-CerquidesM #learning #modelling #naive bayes
- Tractable Bayesian Learning of Tree Augmented Naive Bayes Models (JC, RLdM), pp. 75–82.
- ICML-2003-ConitzerS #algorithm #learning #multi #named #self
- AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents (VC, TS), pp. 83–90.
- ICML-2003-ConitzerS03a #bound #framework #game studies #named
- BL-WoLF: A Framework For Loss-Bounded Learnability In Zero-Sum Games (VC, TS), pp. 91–98.
- ICML-2003-CozmanCC #learning #modelling
- Semi-Supervised Learning of Mixture Models (FGC, IC, MCC), pp. 99–106.
- ICML-2003-CumbyR #kernel #learning #on the #relational
- On Kernel Methods for Relational Learning (CMC, DR), pp. 107–114.
- ICML-2003-DeCosteM #approximate #classification #incremental #kernel #performance
- Fast Query-Optimized Kernel Machine Classification Via Incremental Approximate Nearest Support Vectors (DD, DM), pp. 115–122.
- ICML-2003-DriessensR #learning #relational
- Relational Instance Based Regression for Relational Reinforcement Learning (KD, JR), pp. 123–130.
- ICML-2003-Duff #design
- Design for an Optimal Probe (MOD), pp. 131–138.
- ICML-2003-Duff03a #approximate #markov
- Diffusion Approximation for Bayesian Markov Chains (MOD), pp. 139–146.
- ICML-2003-Elkan #difference #using
- Using the Triangle Inequality to Accelerate k-Means (CE), pp. 147–153.
- ICML-2003-EngelMM #approach #difference #learning #process
- Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning (YE, SM, RM), pp. 154–161.
- ICML-2003-Even-DarMM #learning
- Action Elimination and Stopping Conditions for Reinforcement Learning (EED, SM, YM), pp. 162–169.
- ICML-2003-FanLM
- Utilizing Domain Knowledge in Neuroevolution (JF, RL, RM), pp. 170–177.
- ICML-2003-FernB #lazy evaluation
- Boosting Lazy Decision Trees (XZF, CEB), pp. 178–185.
- ICML-2003-FernB03a #approach #clustering #random
- Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach (XZF, CEB), pp. 186–193.
- ICML-2003-Flach #comprehension #geometry #machine learning #metric
- The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics (PAF), pp. 194–201.
- ICML-2003-FurnkranzF #analysis #evaluation #metric
- An Analysis of Rule Evaluation Metrics (JF, PAF), pp. 202–209.
- ICML-2003-GargR #learning
- Margin Distribution and Learning (AG, DR), pp. 210–217.
- ICML-2003-GeibelW #learning
- Perceptron Based Learning with Example Dependent and Noisy Costs (PG, FW), pp. 218–225.
- ICML-2003-GhavamzadehM #algorithm #policy
- Hierarchical Policy Gradient Algorithms (MG, SM), pp. 226–233.
- ICML-2003-Graepel #difference #equation #linear #process
- Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations (TG), pp. 234–241.
- ICML-2003-GreenwaldH #correlation
- Correlated Q-Learning (AG, KH), pp. 242–249.
- ICML-2003-Harrington #algorithm #collaboration #online #ranking #using
- Online Ranking/Collaborative Filtering Using the Perceptron Algorithm (EFH), pp. 250–257.
- ICML-2003-IsaacS #learning
- Goal-directed Learning to Fly (AI, CS), pp. 258–265.
- ICML-2003-Jaeger #classification #concept #probability
- Probabilistic Classifiers and the Concepts They Recognize (MJ), pp. 266–273.
- ICML-2003-JensenNH #bias #relational
- Avoiding Bias when Aggregating Relational Data with Degree Disparity (DJ, JN, MH), pp. 274–281.
- ICML-2003-JinYZH #algorithm #exponential #performance #scalability
- A Faster Iterative Scaling Algorithm for Conditional Exponential Model (RJ, RY, JZ, AGH), pp. 282–289.
- ICML-2003-Joachims #clustering #graph #learning
- Transductive Learning via Spectral Graph Partitioning (TJ), pp. 290–297.
- ICML-2003-JohnsonTG #crawling #evolution #web
- Evolving Strategies for Focused Web Crawling (JJ, KT, CLG), pp. 298–305.
- ICML-2003-KakadeKL #metric
- Exploration in Metric State Spaces (SK, MJK, JL), pp. 306–312.
- ICML-2003-KalousisH
- Representational Issues in Meta-Learning (AK, MH), pp. 313–320.
- ICML-2003-KashimaTI #graph #kernel
- Marginalized Kernels Between Labeled Graphs (HK, KT, AI), pp. 321–328.
- ICML-2003-KaskiP #analysis
- Informative Discriminant Analysis (SK, JP), pp. 329–336.
- ICML-2003-KennedyJ #learning #problem
- Characteristics of Long-term Learning in Soar and its Application to the Utility Problem (WGK, KADJ), pp. 337–344.
- ICML-2003-KirshnerPS #learning #permutation
- Unsupervised Learning with Permuted Data (SK, SP, PS), pp. 345–352.
- ICML-2003-KlautauJO #classification #comparison #kernel #modelling
- Discriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers (AK, NJ, AO), pp. 353–360.
- ICML-2003-KondorJ #kernel #set
- A Kernel Between Sets of Vectors (RK, TJ), pp. 361–368.
- ICML-2003-KotnikK #learning #self
- The Significance of Temporal-Difference Learning in Self-Play Training TD-Rummy versus EVO-rummy (CK, JKK), pp. 369–375.
- ICML-2003-KrawiecB #learning #synthesis #visual notation
- Visual Learning by Evolutionary Feature Synthesis (KK, BB), pp. 376–383.
- ICML-2003-KrishnapuramCJ #classification #documentation
- Classification of Text Documents Based on Minimum System Entropy (RK, KPC, SJ), pp. 384–391.
- ICML-2003-KubicaMCS #analysis #collaboration #graph #performance #query
- Finding Underlying Connections: A Fast Graph-Based Method for Link Analysis and Collaboration Queries (JK, AWM, DC, JGS), pp. 392–399.
- ICML-2003-KwokT #kernel #learning
- Learning with Idealized Kernels (JTK, IWT), pp. 400–407.
- ICML-2003-KwokT03a #kernel #problem
- The Pre-Image Problem in Kernel Methods (JTK, IWT), pp. 408–415.
- ICML-2003-LachicheF #classification #multi #probability #using
- Improving Accuracy and Cost of Two-class and Multi-class Probabilistic Classifiers Using ROC Curves (NL, PAF), pp. 416–423.
- ICML-2003-LagoudakisP #classification #learning
- Reinforcement Learning as Classification: Leveraging Modern Classifiers (MGL, RP), pp. 424–431.
- ICML-2003-LangleyGBS #induction #modelling #process #robust
- Robust Induction of Process Models from Time-Series Data (PL, DG, SDB, KS), pp. 432–439.
- ICML-2003-LaudD #analysis #learning
- The Influence of Reward on the Speed of Reinforcement Learning: An Analysis of Shaping (AL, GD), pp. 440–447.
- ICML-2003-LeeL #learning #using
- Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression (WSL, BL), pp. 448–455.
- ICML-2003-LeskovecS #dataset #linear #programming
- Linear Programming Boosting for Uneven Datasets (JL, JST), pp. 456–463.
- ICML-2003-LiWL #classification #generative #keyword #probability #using
- Text Classification Using Stochastic Keyword Generation (CL, JRW, HL), pp. 464–471.
- ICML-2003-LiY #analysis #categorisation #classification
- A Loss Function Analysis for Classification Methods in Text Categorization (FL, YY), pp. 472–479.
- ICML-2003-LingY #ranking
- Decision Tree with Better Ranking (CXL, RJY), pp. 480–487.
- ICML-2003-LiuLCM #clustering #evaluation #feature model
- An Evaluation on Feature Selection for Text Clustering (TL, SL, ZC, WYM), pp. 488–495.
- ICML-2003-LuG #classification
- Link-based Classification (QL, LG), pp. 496–503.
- ICML-2003-Mamitsuka #analysis
- Hierarchical Latent Knowledge Analysis for Co-occurrence Data (HM), pp. 504–511.
- ICML-2003-MannorRG #performance #policy
- The Cross Entropy Method for Fast Policy Search (SM, RYR, YG), pp. 512–519.
- ICML-2003-MarchandSSS #set
- The Set Covering Machine with Data-Dependent Half-Spaces (MM, MS, JST, MS), pp. 520–527.
- ICML-2003-McGovernJ #identification #learning #multi #predict #relational #using
- Identifying Predictive Structures in Relational Data Using Multiple Instance Learning (AM, DJ), pp. 528–535.
- ICML-2003-McMahanGB #cost analysis
- Planning in the Presence of Cost Functions Controlled by an Adversary (HBM, GJG, AB), pp. 536–543.
- ICML-2003-Mesterharm #algorithm #multi #using
- Using Linear-threshold Algorithms to Combine Multi-class Sub-experts (CM), pp. 544–551.
- ICML-2003-MooreW #learning #network
- Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning (AWM, WKW), pp. 552–559.
- ICML-2003-Munos #approximate #bound #fault #policy
- Error Bounds for Approximate Policy Iteration (RM), pp. 560–567.
- ICML-2003-OngS #kernel #machine learning
- Machine Learning with Hyperkernels (CSO, AJS), pp. 568–575.
- ICML-2003-OntanonP #learning #multi
- Justification-based Multiagent Learning (SO, EP), pp. 576–583.
- ICML-2003-PavlovPPU #modelling
- Mixtures of Conditional Maximum Entropy Models (DP, AP, DMP, LHU), pp. 584–591.
- ICML-2003-PerkinsT #feature model #online #using
- Online Feature Selection using Grafting (SP, JT), pp. 592–599.
- ICML-2003-PorterEHT #classification #order #scalability #statistics
- Weighted Order Statistic Classifiers with Large Rank-Order Margin (RBP, DE, DRH, JT), pp. 600–607.
- ICML-2003-RavindranB
- Relativized Options: Choosing the Right Transformation (BR, AGB), pp. 608–615.
- ICML-2003-RennieSTK #classification #naive bayes
- Tackling the Poor Assumptions of Naive Bayes Text Classifiers (JDR, LS, JT, DRK), pp. 616–623.
- ICML-2003-RichardsonD #learning #multi
- Learning with Knowledge from Multiple Experts (MR, PMD), pp. 624–631.
- ICML-2003-RivestP #network
- Combining TD-learning with Cascade-correlation Networks (FR, DP), pp. 632–639.
- ICML-2003-RosipalTM #classification #kernel #linear
- Kernel PLS-SVC for Linear and Nonlinear Classification (RR, LJT, BM), pp. 640–647.
- ICML-2003-RuckertK #learning #probability
- Stochastic Local Search in k-Term DNF Learning (UR, SK), pp. 648–655.
- ICML-2003-RussellZ #learning
- Q-Decomposition for Reinforcement Learning Agents (SJR, AZ), pp. 656–663.
- ICML-2003-SalakhutdinovR #adaptation #bound #optimisation
- Adaptive Overrelaxed Bound Optimization Methods (RS, STR), pp. 664–671.
- ICML-2003-SalakhutdinovRG #optimisation
- Optimization with EM and Expectation-Conjugate-Gradient (RS, STR, ZG), pp. 672–679.
- ICML-2003-SchoknechtM #algorithm #performance
- TD(0) Converges Provably Faster than the Residual Gradient Algorithm (RS, AM), pp. 680–687.
- ICML-2003-SebbanJ #approach #grammar inference #on the #semistructured data #statistics
- On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data (MS, JCJ), pp. 688–695.
- ICML-2003-ShihRCK #statistics
- Text Bundling: Statistics Based Data-Reduction (LS, JDR, YHC, DRK), pp. 696–703.
- ICML-2003-SiJ #collaboration #flexibility
- Flexible Mixture Model for Collaborative Filtering (LS, RJ), pp. 704–711.
- ICML-2003-SinghLJPS #learning #predict
- Learning Predictive State Representations (SPS, MLL, NKJ, DP, PS), pp. 712–719.
- ICML-2003-SrebroJ #approximate #rank
- Weighted Low-Rank Approximations (NS, TSJ), pp. 720–727.
- ICML-2003-StimpsonG #approach #learning #social
- Learning To Cooperate in a Social Dilemma: A Satisficing Approach to Bargaining (JLS, MAG), pp. 728–735.
- ICML-2003-Strens #optimisation
- Evolutionary MCMC Sampling and Optimization in Discrete Spaces (MJAS), pp. 736–743.
- ICML-2003-TaskarWK #learning #testing
- Learning on the Test Data: Leveraging Unseen Features (BT, MFW, DK), pp. 744–751.
- ICML-2003-ValentiniD #bias
- Low Bias Bagged Support Vector Machines (GV, TGD), pp. 752–759.
- ICML-2003-VishwanathanSM
- SimpleSVM (SVNV, AJS, MNM), pp. 760–767.
- ICML-2003-VovkNG #online #testing
- Testing Exchangeability On-Line (VV, IN, AG), pp. 768–775.
- ICML-2003-WangD #learning #modelling #policy
- Model-based Policy Gradient Reinforcement Learning (XW, TGD), pp. 776–783.
- ICML-2003-WangSPZ #learning #modelling #principle
- Learning Mixture Models with the Latent Maximum Entropy Principle (SW, DS, FP, YZ), pp. 784–791.
- ICML-2003-WiewioraCE #learning
- Principled Methods for Advising Reinforcement Learning Agents (EW, GWC, CE), pp. 792–799.
- ICML-2003-WinnerV #learning #named
- DISTILL: Learning Domain-Specific Planners by Example (EW, MMV), pp. 800–807.
- ICML-2003-WongMCW #detection #network
- Bayesian Network Anomaly Pattern Detection for Disease Outbreaks (WKW, AWM, GFC, MMW), pp. 808–815.
- ICML-2003-WuC #adaptation #learning
- Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning (GW, EYC), pp. 816–823.
- ICML-2003-WuS #optimisation
- New í-Support Vector Machines and their Sequential Minimal Optimization (XW, RKS), pp. 824–831.
- ICML-2003-YamadaSU #network
- Cross-Entropy Directed Embedding of Network Data (TY, KS, NU), pp. 832–839.
- ICML-2003-YamadaSYT #data-driven #database #induction #standard
- Decision-tree Induction from Time-series Data Based on a Standard-example Split Test (YY, ES, HY, KT), pp. 840–847.
- ICML-2003-YanDMW #approximate #classification #optimisation #performance #statistics
- Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic (LY, RHD, MM, RHW), pp. 848–855.
- ICML-2003-YuL #feature model #performance
- Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution (LY, HL), pp. 856–863.
- ICML-2003-ZhaZ
- Isometric Embedding and Continuum ISOMAP (HZ, ZZ), pp. 864–871.
- ICML-2003-Zhang #kernel #learning #metric #multi #representation #scalability #towards
- Learning Metrics via Discriminant Kernels and Multidimensional Scaling: Toward Expected Euclidean Representation (ZZ), pp. 872–879.
- ICML-2003-ZhangH #learning #taxonomy
- Learning from Attribute Value Taxonomies and Partially Specified Instances (JZ, VH), pp. 880–887.
- ICML-2003-ZhangJYH #approximate #categorisation #scalability
- Modified Logistic Regression: An Approximation to SVM and Its Applications in Large-Scale Text Categorization (JZ, RJ, YY, AGH), pp. 888–895.
- ICML-2003-ZhangXC #adaptation #learning
- Exploration and Exploitation in Adaptive Filtering Based on Bayesian Active Learning (YZ, WX, JPC), pp. 896–903.
- ICML-2003-ZhangY #convergence #on the
- On the Convergence of Boosting Procedures (TZ, BY), pp. 904–911.
- ICML-2003-ZhuGL #learning #using
- Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (XZ, ZG, JDL), pp. 912–919.
- ICML-2003-ZhuWC #dataset #scalability
- Eliminating Class Noise in Large Datasets (XZ, XW, QC), pp. 920–927.
- ICML-2003-Zinkevich #online #programming
- Online Convex Programming and Generalized Infinitesimal Gradient Ascent (MZ), pp. 928–936.
43 ×#learning
13 ×#classification
10 ×#kernel
10 ×#using
8 ×#algorithm
8 ×#multi
7 ×#analysis
7 ×#modelling
7 ×#performance
6 ×#approximate
13 ×#classification
10 ×#kernel
10 ×#using
8 ×#algorithm
8 ×#multi
7 ×#analysis
7 ×#modelling
7 ×#performance
6 ×#approximate