BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Canada
1 × Japan
1 × Russia
1 × Sweden
3 × Germany
Collaborated with:
V.Mottl I.B.Muchnik A.Kopylov S.Dvoenko C.A.Kulikowski A.Larin O.Krasotkina A.Gubareva V.Sulimova A.Tatarchuk N.Razin D.Windridge S.Kuo S.Huang B.Chen
Talks about:
space (4) recognit (3) pattern (3) featureless (2) imaginari (2) hilbert (2) select (2) machin (2) data (2) represent (1)

Person: Oleg Seredin

DBLP DBLP: Seredin:Oleg

Contributed to:

ICPR 20142014
MLDM 20142014
ICPR 20122012
MLDM 20092009
MLDM 20052005
ICPR v2 20022002
MLDM 20012001

Wrote 7 papers:

ICPR-2014-GubarevaSSLM #linear
Finding the Largest Hypercavity in a Linear Data Space (AG, VS, OS, AL, VM), pp. 4406–4410.
MLDM-2014-LarinSKKHC #classification #parametricity #representation #using
Parametric Representation of Objects in Color Space Using One-Class Classifiers (AL, OS, AK, SYK, SCH, BHC), pp. 300–314.
ICPR-2012-SeredinMTRW #multimodal #pattern matching #pattern recognition #recognition
Convex support and Relevance Vector Machines for selective multimodal pattern recognition (OS, VM, AT, NR, DW), pp. 1647–1650.
MLDM-2009-SeredinKM #machine learning #order #set
Selection of Subsets of Ordered Features in Machine Learning (OS, AK, VM), pp. 16–28.
MLDM-2005-MottlKSM #data mining #kernel #mining #multi
Principles of Multi-kernel Data Mining (VM, OK, OS, IBM), pp. 52–61.
ICPR-v2-2002-MottlSDKM #pattern matching #pattern recognition #recognition
Featureless Pattern Recognition in an Imaginary Hilbert Space (VM, OS, SD, CAK, IBM), pp. 88–91.
MLDM-2001-MottlDSKM #classification #pattern matching #pattern recognition #recognition
Featureless Pattern Recognition in an Imaginary Hilbert Space and Its Application to Protein Fold Classification (VM, SD, OS, CAK, IBM), pp. 322–336.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.