Petra Perner
Proceedings of the Sixth International Conference on Machine Learning and Data Mining in Pattern Recognition
MLDM, 2009.
@proceedings{MLDM-2009, address = "Leipzig, Germany", doi = "10.1007/978-3-642-03070-3", editor = "Petra Perner", isbn = "978-3-642-03069-7", publisher = "{Springer International Publishing}", series = "{Lecture Notes in Computer Science}", title = "{Proceedings of the Sixth International Conference on Machine Learning and Data Mining in Pattern Recognition}", volume = 5632, year = 2009, }
Contents (61 items)
- MLDM-2009-Truemper #reliability #strict
- Improved Comprehensibility and Reliability of Explanations via Restricted Halfspace Discretization (KT), pp. 1–15.
- MLDM-2009-SeredinKM #machine learning #order #set
- Selection of Subsets of Ordered Features in Machine Learning (OS, AK, VM), pp. 16–28.
- MLDM-2009-KurasovaM #visualisation
- Combination of Vector Quantization and Visualization (OK, AM), pp. 29–43.
- MLDM-2009-MorelandT
- Discretization of Target Attributes for Subgroup Discovery (KM, KT), pp. 44–52.
- MLDM-2009-ZhuFF #classification #privacy
- Preserving Privacy in Time Series Data Classification by Discretization (YZ, YF, HF), pp. 53–67.
- MLDM-2009-QureshiZ #quality #using
- Using Resampling Techniques for Better Quality Discretization (TQ, DAZ), pp. 68–81.
- MLDM-2009-LiuYZZZL #classification #scalability
- A Large Margin Classifier with Additional Features (XL, JY, EZ, GZ, YZ, ML), pp. 82–95.
- MLDM-2009-HasanG #adaptation #classification #modelling
- Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier (BASH, JQG), pp. 96–106.
- MLDM-2009-WangZ #classification #kernel
- Optimal Double-Kernel Combination for Classification (FW, HZ), pp. 107–122.
- MLDM-2009-MoedS #classification #performance
- Efficient AdaBoost Region Classification (MM, ENS), pp. 123–136.
- MLDM-2009-KobayashiS #classification #distributed #linear #representation #using
- A Linear Classification Method in a Very High Dimensional Space Using Distributed Representation (TK, IS), pp. 137–147.
- MLDM-2009-StahlBA #classification #composition #framework #induction #named #parallel
- PMCRI: A Parallel Modular Classification Rule Induction Framework (FTS, MAB, MA), pp. 148–162.
- MLDM-2009-TronciGR
- Dynamic Score Combination: A Supervised and Unsupervised Score Combination Method (RT, GG, FR), pp. 163–177.
- MLDM-2009-BarinovaV #named
- ODDboost: Incorporating Posterior Estimates into AdaBoost (OB, DV), pp. 178–190.
- MLDM-2009-Mendes-MoreiraJSS #approach #case study #learning
- Ensemble Learning: A Study on Different Variants of the Dynamic Selection Approach (JMM, AMJ, CS, JFdS), pp. 191–205.
- MLDM-2009-DuangsoithongW #analysis #classification
- Relevance and Redundancy Analysis for Ensemble Classifiers (RD, TW), pp. 206–220.
- MLDM-2009-RosenthalVHHL
- Drift-Aware Ensemble Regression (FR, PBV, MH, DH, WL), pp. 221–235.
- MLDM-2009-LiHLG #concept #detection #random #streaming
- Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees (PPL, XH, QL, YG), pp. 236–250.
- MLDM-2009-LoglisciM #mining #multi
- Mining Multiple Level Non-redundant Association Rules through Two-Fold Pruning of Redundancies (CL, DM), pp. 251–265.
- MLDM-2009-MendesA #approach #mining #natural language
- Pattern Mining with Natural Language Processing: An Exploratory Approach (ACM, CA), pp. 266–279.
- MLDM-2009-FranceC #distance
- Is the Distance Compression Effect Overstated? Some Theory and Experimentation (SLF, JDC), pp. 280–294.
- MLDM-2009-SegataB #dataset #performance #scalability
- Fast Local Support Vector Machines for Large Datasets (NS, EB), pp. 295–310.
- MLDM-2009-BarakatB
- The Effect of Domain Knowledge on Rule Extraction from Support Vector Machines (NHB, APB), pp. 311–321.
- MLDM-2009-ElghazelB #towards
- Towards B-Coloring of SOM (HE, KB), pp. 322–336.
- MLDM-2009-SmaouiMM #algorithm #assessment #clustering #named #quality
- CSBIterKmeans: A New Clustering Algorithm Based on Quantitative Assessment of the Clustering Quality (TS, SM, CMS), pp. 337–346.
- MLDM-2009-CzarnowskiJ #clustering #distributed
- Agent-Based Non-distributed and Distributed Clustering (IC, PJ), pp. 347–360.
- MLDM-2009-AbdalaJ #approach #clustering
- An Evidence Accumulation Approach to Constrained Clustering Combination (DDA, XJ), pp. 361–371.
- MLDM-2009-SakaiI #clustering #performance #random
- Fast Spectral Clustering with Random Projection and Sampling (TS, AI), pp. 372–384.
- MLDM-2009-Hoppner #how #question
- How Much True Structure Has Been Discovered? (FH), pp. 385–397.
- MLDM-2009-SarmentoKOU #clustering #performance #set
- Efficient Clustering of Web-Derived Data Sets (LS, AK, ECO, LHU), pp. 398–412.
- MLDM-2009-BenabdeslemS #approach #clustering #probability
- A Probabilistic Approach for Constrained Clustering with Topological Map (KB, JS), pp. 413–426.
- MLDM-2009-CeciALCFVM #data type #detection #mining #relational
- Relational Frequent Patterns Mining for Novelty Detection from Data Streams (MC, AA, CL, CC, FF, CV, DM), pp. 427–439.
- MLDM-2009-IsakssonD #algorithm #case study #comparative #detection
- A Comparative Study of Outlier Detection Algorithms (CI, MHD), pp. 440–453.
- MLDM-2009-Mejia-LavalleV #detection
- Outlier Detection with Explanation Facility (MML, ASV), pp. 454–464.
- MLDM-2009-BouthinonSV #ambiguity #concept #learning
- Concept Learning from (Very) Ambiguous Examples (DB, HS, VV), pp. 465–478.
- MLDM-2009-OkuboH #concept #pseudo
- Finding Top-N Pseudo Formal Concepts with Core Intents (YO, MH), pp. 479–493.
- MLDM-2009-Calliess #on the
- On Fixed Convex Combinations of No-Regret Learners (JPC), pp. 494–504.
- MLDM-2009-YuksekC #algorithm
- An Improved Tabu Search (ITS) Algorithm Based on Open Cover Theory for Global Extremums (KY, SC), pp. 505–515.
- MLDM-2009-MorelandT09a #problem
- The Needles-in-Haystack Problem (KM, KT), pp. 516–524.
- MLDM-2009-NikolopoulosPKP #comprehension #framework #image #probability #semantics
- An Evidence-Driven Probabilistic Inference Framework for Semantic Image Understanding (SN, GTP, IK, IP), pp. 525–539.
- MLDM-2009-NunesSP #detection #image #using
- Detection of Masses in Mammographic Images Using Simpson’s Diversity Index in Circular Regions and SVM (APN, ACS, ACdP), pp. 540–553.
- MLDM-2009-KovalevPV #image #mining
- Mining Lung Shape from X-Ray Images (VK, AP, PV), pp. 554–568.
- MLDM-2009-XiongBS #detection
- A Wavelet-Based Method for Detecting Seismic Anomalies in Remote Sensing Satellite Data (PX, YB, XS), pp. 569–581.
- MLDM-2009-LiuSQ
- Spectrum Steganalysis of WAV Audio Streams (QL, AHS, MQ), pp. 582–593.
- MLDM-2009-FersiniMAA #approach #multi #recognition
- Audio-Based Emotion Recognition in Judicial Domain: A Multilayer Support Vector Machines Approach (EF, EM, GA, FA), pp. 594–602.
- MLDM-2009-LeeCWL #learning
- Learning with a Quadruped Chopstick Robot (WCL, JCC, SzW, KML), pp. 603–616.
- MLDM-2009-RiesenB #difference #graph #prototype #reduction #using
- Dissimilarity Based Vector Space Embedding of Graphs Using Prototype Reduction Schemes (KR, HB), pp. 617–631.
- MLDM-2009-GoncalvesQ #classification #kernel #semantics #using
- Using Graph-Kernels to Represent Semantic Information in Text Classification (TG, PQ), pp. 632–646.
- MLDM-2009-JingWYX #categorisation #feature model #framework
- A General Framework of Feature Selection for Text Categorization (HJ, BW, YY, YX), pp. 647–662.
- MLDM-2009-GadK #clustering #semantics #similarity #using
- New Semantic Similarity Based Model for Text Clustering Using Extended Gloss Overlaps (WKG, MSK), pp. 663–677.
- MLDM-2009-StrumbeljRK #learning
- Learning Betting Tips from Users’ Bet Selections (ES, MRS, IK), pp. 678–688.
- MLDM-2009-SarmentoKOU09a #ambiguity #approach
- An Approach to Web-Scale Named-Entity Disambiguation (LS, AK, ECO, LHU), pp. 689–703.
- MLDM-2009-ChanguelLB #automation #html #learning
- A General Learning Method for Automatic Title Extraction from HTML Pages (SC, NL, BBM), pp. 704–718.
- MLDM-2009-CelepcikayEO #dataset #using
- Regional Pattern Discovery in Geo-referenced Datasets Using PCA (OUC, CFE, CO), pp. 719–733.
- MLDM-2009-NikovskiR #modelling #predict
- Memory-Based Modeling of Seasonality for Prediction of Climatic Time Series (DN, GR), pp. 734–748.
- MLDM-2009-DereliogluGO #analysis #approach
- A Neural Approach for SME’s Credit Risk Analysis in Turkey (GD, FSG, NO), pp. 749–759.
- MLDM-2009-FernandezBFM #automation #data mining #mining
- Assisting Data Mining through Automated Planning (FF, DB, SF, DMM), pp. 760–774.
- MLDM-2009-DashevskiyL #predict
- Predictions with Confidence in Applications (MD, ZL), pp. 775–786.
- MLDM-2009-GaagRFGEBF #classification #network
- Aligning Bayesian Network Classifiers with Medical Contexts (LCvdG, SR, AF, AdG, MJCE, FJB, BCJMF), pp. 787–801.
- MLDM-2009-ReinaldoFRMC
- Assessing the Eligibility of Kidney Transplant Donors (FR, CF, MAR, AM, RC), pp. 802–809.
- MLDM-2009-SilvaSNPJN #classification #geometry #image #metric #using
- Lung Nodules Classification in CT Images Using Simpson’s Index, Geometrical Measures and One-Class SVM (CAdS, ACS, SMBN, ACdP, GBJ, RAN), pp. 810–822.
11 ×#classification
8 ×#using
7 ×#approach
7 ×#clustering
6 ×#detection
5 ×#learning
5 ×#mining
4 ×#image
4 ×#performance
3 ×#algorithm
8 ×#using
7 ×#approach
7 ×#clustering
6 ×#detection
5 ×#learning
5 ×#mining
4 ×#image
4 ×#performance
3 ×#algorithm