Travelled to:
1 × China
1 × Japan
2 × Canada
2 × France
8 × USA
Collaborated with:
V.Kumar F.Chen H.Cheng M.Steinbach P.M.Comar J.Scripps A.Esfahanian H.Xiong R.Jin L.Liu S.Saha A.Nucci S.Ranjan A.K.Jain A.K.Jain S.J.Fodeh W.F.Punch J.Gao J.Srivastava S.Shekhar H.Blau S.A.Harp R.P.Goldman S.A.Klooster C.Potter
Talks about:
detect (4) learn (4) support (3) pattern (3) network (3) supervis (2) multipl (2) cluster (2) measur (2) featur (2)
Person: Pang-Ning Tan
DBLP: Tan:Pang=Ning
Contributed to:
Wrote 17 papers:
- CIKM-2012-ComarLSNT #detection #kernel #linear
- Weighted linear kernel with tree transformed features for malware detection (PMC, LL, SS, AN, PNT), pp. 2287–2290.
- ICPR-2012-LiuCSTN #learning #multi #performance #problem #recursion #scalability
- Recursive NMF: Efficient label tree learning for large multi-class problems (LL, PMC, SS, PNT, AN), pp. 2148–2151.
- KDD-2011-ChenRT #adaptation #detection #incremental #learning
- Detecting bots via incremental LS-SVM learning with dynamic feature adaptation (FC, SR, PNT), pp. 386–394.
- CIKM-2010-ComarTJ #learning #multi #network
- Multi task learning on multiple related networks (PMC, PNT, AKJ), pp. 1737–1740.
- CIKM-2009-ChenTJ #classification #detection #framework #social #social media #web
- A co-classification framework for detecting web spam and spammers in social media web sites (FC, PNT, AKJ), pp. 1807–1810.
- KDD-2009-ScrippsTE #analysis #network #preprocessor
- Measuring the effects of preprocessing decisions and network forces in dynamic network analysis (JS, PNT, AHE), pp. 747–756.
- SAC-2009-FodehPT #clustering #documentation #semantics #statistics
- Combining statistics and semantics via ensemble model for document clustering (SJF, WFP, PNT), pp. 1446–1450.
- ICPR-2008-ScrippsTCE #approach #matrix #predict
- A matrix alignment approach for link prediction (JS, PNT, FC, AHE), pp. 1–4.
- KDD-2008-ChengT #learning
- Semi-supervised learning with data calibration for long-term time series forecasting (HC, PNT), pp. 133–141.
- SAC-2006-GaoCT #detection
- Semi-supervised outlier detection (JG, HC, PNT), pp. 635–636.
- KDD-2004-SteinbachTK
- Support envelopes: a technique for exploring the structure of association patterns (MS, PNT, VK), pp. 296–305.
- KDD-2004-SteinbachTXK
- Generalizing the notion of support (MS, PNT, HX, VK), pp. 689–694.
- KDD-2004-TanJ #multi
- Ordering patterns by combining opinions from multiple sources (PNT, RJ), pp. 695–700.
- KDD-2004-XiongSTK #bound #correlation #identification
- Exploiting a support-based upper bound of Pearson’s correlation coefficient for efficiently identifying strongly correlated pairs (HX, SS, PNT, VK), pp. 334–343.
- KDD-2003-SteinbachTKKP #clustering #using
- Discovery of climate indices using clustering (MS, PNT, VK, SAK, CP), pp. 446–455.
- KDD-2002-TanKS
- Selecting the right interestingness measure for association patterns (PNT, VK, JS), pp. 32–41.
- KDD-2000-TanBHG #data mining #mining
- Textual data mining of service center call records (PNT, HB, SAH, RPG), pp. 417–423.