Won Kim, Ron Kohavi, Johannes Gehrke, William DuMouchel
Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining
KDD, 2004.
@proceedings{KDD-2004, address = "Seattle, Washington, USA", editor = "Won Kim and Ron Kohavi and Johannes Gehrke and William DuMouchel", isbn = "1-58113-888-1", publisher = "{ACM}", title = "{Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining}", year = 2004, }
Contents (112 items)
- KDD-2004-Haseltine #design
- User-centered design for KDD (EH), p. 1.
- KDD-2004-Heckerman #data mining #mining #modelling #visual notation
- Graphical models for data mining (DH), p. 2.
- KDD-2004-AbeZL #learning #multi
- An iterative method for multi-class cost-sensitive learning (NA, BZ, JL), pp. 3–11.
- KDD-2004-AfratiGM #approximate #set
- Approximating a collection of frequent sets (FNA, AG, HM), pp. 12–19.
- KDD-2004-AgichteinG #automation #mining #segmentation
- Mining reference tables for automatic text segmentation (EA, VG), pp. 20–29.
- KDD-2004-AiroldiF #network
- Recovering latent time-series from their observed sums: network tomography with particle filters (EA, CF), pp. 30–39.
- KDD-2004-AndersonMCN #performance
- Fast nonlinear regression via eigenimages applied to galactic morphology (BA, AWM, AJC, RN), pp. 40–48.
- KDD-2004-BagnallJ #clustering #modelling
- Clustering time series from ARMA models with clipped data (AJB, GJJ), pp. 49–58.
- KDD-2004-BasuBM #clustering #framework #probability
- A probabilistic framework for semi-supervised clustering (SB, MB, RJM), pp. 59–68.
- KDD-2004-CaruanaN #analysis #data mining #empirical #learning #metric #mining #performance
- Data mining in metric space: an empirical analysis of supervised learning performance criteria (RC, ANM), pp. 69–78.
- KDD-2004-ChakrabartiPMF #automation
- Fully automatic cross-associations (DC, SP, DSM, CF), pp. 79–88.
- KDD-2004-CohenS #integration #markov #process
- Exploiting dictionaries in named entity extraction: combining semi-Markov extraction processes and data integration methods (WWC, SS), pp. 89–98.
- KDD-2004-DalviDMSV #classification
- Adversarial classification (NND, PMD, M, SKS, DV), pp. 99–108.
- KDD-2004-EvgeniouP #learning #multi
- Regularized multi--task learning (TE, MP), pp. 109–117.
- KDD-2004-FaloutsosMT #performance
- Fast discovery of connection subgraphs (CF, KSM, AT), pp. 118–127.
- KDD-2004-Fan #concept #data type
- Systematic data selection to mine concept-drifting data streams (WF), pp. 128–137.
- KDD-2004-GadeWK #constraints #mining #performance
- Efficient closed pattern mining in the presence of tough block constraints (KG, JW, GK), pp. 138–147.
- KDD-2004-HeCH #approach #correlation #interface #mining #query #web
- Discovering complex matchings across web query interfaces: a correlation mining approach (BH, KCCC, JH), pp. 148–157.
- KDD-2004-HorvathGW #graph #kernel #mining #predict
- Cyclic pattern kernels for predictive graph mining (TH, TG, SW), pp. 158–167.
- KDD-2004-HuL #mining
- Mining and summarizing customer reviews (MH, BL), pp. 168–177.
- KDD-2004-JaroszewiczS #network #using
- Interestingness of frequent itemsets using Bayesian networks as background knowledge (SJ, DAS), pp. 178–186.
- KDD-2004-JehW #graph #mining
- Mining the space of graph properties (GJ, JW), pp. 187–196.
- KDD-2004-JinZM #analysis #mining #probability #semantics #web
- Web usage mining based on probabilistic latent semantic analysis (XJ, YZ, BM), pp. 197–205.
- KDD-2004-KeoghLR #data mining #mining #towards
- Towards parameter-free data mining (EJK, SL, C(R), pp. 206–215.
- KDD-2004-KumarMS #approach #graph
- A graph-theoretic approach to extract storylines from search results (RK, UM, DS), pp. 216–225.
- KDD-2004-LiCTW #incremental #maintenance
- Incremental maintenance of quotient cube for median (CL, GC, AKHT, SW), pp. 226–235.
- KDD-2004-MamoulisCKHTC #mining #query
- Mining, indexing, and querying historical spatiotemporal data (NM, HC, GK, MH, YT, DWC), pp. 236–245.
- KDD-2004-Muslea #machine learning #online #query
- Machine learning for online query relaxation (IM), pp. 246–255.
- KDD-2004-NeillM #agile #clustering #detection
- Rapid detection of significant spatial clusters (DBN, AWM), pp. 256–265.
- KDD-2004-RamakrishnanKMPH #algorithm #mining
- Turning CARTwheels: an alternating algorithm for mining redescriptions (NR, DK, BM, MP, RFH), pp. 266–275.
- KDD-2004-ShavlikS #detection #effectiveness #evaluation
- Selection, combination, and evaluation of effective software sensors for detecting abnormal computer usage (JWS, MS), pp. 276–285.
- KDD-2004-SmithE #framework #network
- A Bayesian network framework for reject inference (ATS, CE), pp. 286–295.
- KDD-2004-SteinbachTK
- Support envelopes: a technique for exploring the structure of association patterns (MS, PNT, VK), pp. 296–305.
- KDD-2004-SteyversSRG #modelling #probability #topic
- Probabilistic author-topic models for information discovery (MS, PS, MRZ, TLG), pp. 306–315.
- KDD-2004-WangWPZS #database #graph #mining #scalability
- Scalable mining of large disk-based graph databases (CW, WW, JP, YZ, BS), pp. 316–325.
- KDD-2004-WuS #information management
- Incorporating prior knowledge with weighted margin support vector machines (XW, RKS), pp. 326–333.
- KDD-2004-XiongSTK #bound #correlation #identification
- Exploiting a support-based upper bound of Pearson’s correlation coefficient for efficiently identifying strongly correlated pairs (HX, SS, PNT, VK), pp. 334–343.
- KDD-2004-Yang #complexity #mining
- The complexity of mining maximal frequent itemsets and maximal frequent patterns (GY), pp. 344–353.
- KDD-2004-YeJL #image #named #performance #reduction #retrieval
- GPCA: an efficient dimension reduction scheme for image compression and retrieval (JY, RJ, QL), pp. 354–363.
- KDD-2004-YePLJXK #algorithm #composition #incremental #named #reduction
- IDR/QR: an incremental dimension reduction algorithm via QR decomposition (JY, QL, HX, HP, RJ, VK), pp. 364–373.
- KDD-2004-ZhangPT #on the #statistics
- On the discovery of significant statistical quantitative rules (HZ, BP, AT), pp. 374–383.
- KDD-2004-ZhangMCS #mining #performance
- Fast mining of spatial collocations (XZ, NM, DWC, YS), pp. 384–393.
- KDD-2004-AliS #architecture #collaboration #distributed #named #recommendation #using
- TiVo: making show recommendations using a distributed collaborative filtering architecture (KA, WvS), pp. 394–401.
- KDD-2004-CumbyFGK #predict
- Predicting customer shopping lists from point-of-sale purchase data (CMC, AEF, RG, MK), pp. 402–409.
- KDD-2004-DengPML #rank
- A rank sum test method for informative gene discovery (LD, JP, JM, DLL), pp. 410–419.
- KDD-2004-Donoho #detection
- Early detection of insider trading in option markets (SD), pp. 420–429.
- KDD-2004-JiangPRTZ #array #clustering #mining
- Mining coherent gene clusters from gene-sample-time microarray data (DJ, JP, MR, CT, AZ), pp. 430–439.
- KDD-2004-IdeK #detection
- Eigenspace-based anomaly detection in computer systems (TI, HK), pp. 440–449.
- KDD-2004-LazarevicKK #detection #effectiveness #locality #scalability
- Effective localized regression for damage detection in large complex mechanical structures (AL, RK, CK), pp. 450–459.
- KDD-2004-LinKLLN #mining #monitoring #visual notation
- Visually mining and monitoring massive time series (JL, EJK, SL, JPL, DMN), pp. 460–469.
- KDD-2004-KolterM #bytecode #detection #learning
- Learning to detect malicious executables in the wild (JZK, MAM), pp. 470–478.
- KDD-2004-YanVS #predict
- Predicting prostate cancer recurrence via maximizing the concordance index (LY, DV, OS), pp. 479–485.
- KDD-2004-YoshidaAWMHNFY #detection
- Density-based spam detector (KY, FA, TW, HM, TH, AN, HF, KY), pp. 486–493.
- KDD-2004-ZhaoLTS #coordination #design #named #parallel #testing #using
- V-Miner: using enhanced parallel coordinates to mine product design and test data (KZ, BL, TMT, AS), pp. 494–502.
- KDD-2004-AggarwalHWY #classification #data type #on the
- On demand classification of data streams (CCA, JH, JW, PSY), pp. 503–508.
- KDD-2004-BanerjeeDGMM #approach #approximate #clustering #matrix
- A generalized maximum entropy approach to bregman co-clustering and matrix approximation (AB, ISD, JG, SM, DSM), pp. 509–514.
- KDD-2004-BanerjeeL #clustering #evaluation
- An objective evaluation criterion for clustering (AB, JL), pp. 515–520.
- KDD-2004-BiZB #kernel
- Column-generation boosting methods for mixture of kernels (JB, TZ, KPB), pp. 521–526.
- KDD-2004-ChengYH #database #incremental #mining #named #scalability
- IncSpan: incremental mining of sequential patterns in large database (HC, XY, JH), pp. 527–532.
- KDD-2004-ChilsonNWZ #correlation #matrix #parallel #robust
- Parallel computation of high dimensional robust correlation and covariance matrices (JC, RTN, AW, RHZ), pp. 533–538.
- KDD-2004-DasMS
- Belief state approaches to signaling alarms in surveillance systems (KD, AWM, JGS), pp. 539–544.
- KDD-2004-DavidsonP #image
- Locating secret messages in images (ID, GP), pp. 545–550.
- KDD-2004-DhillonGK #clustering #kernel #normalisation
- Kernel k-means: spectral clustering and normalized cuts (ISD, YG, BK), pp. 551–556.
- KDD-2004-EsterGJH #data mining #mining #problem #segmentation
- A microeconomic data mining problem: customer-oriented catalog segmentation (ME, RG, WJ, ZH), pp. 557–562.
- KDD-2004-GilburdSW #distributed #named #privacy #scalability
- k-TTP: a new privacy model for large-scale distributed environments (BG, AS, RW), pp. 563–568.
- KDD-2004-Hooker #estimation
- Diagnosing extrapolation: tree-based density estimation (GH), pp. 569–574.
- KDD-2004-Hooker04a #black box
- Discovering additive structure in black box functions (GH), pp. 575–580.
- KDD-2004-HuanWPY #database #graph #mining #named
- SPIN: mining maximal frequent subgraphs from graph databases (JH, WW, JP, JY), pp. 581–586.
- KDD-2004-Iyengar #clustering #detection #on the
- On detecting space-time clusters (VSI), pp. 587–592.
- KDD-2004-JensenNG #classification #relational #why
- Why collective inference improves relational classification (DJ, JN, BG), pp. 593–598.
- KDD-2004-KantarciogluJC #data mining #mining #privacy #question
- When do data mining results violate privacy? (MK, JJ, CC), pp. 599–604.
- KDD-2004-KolczCA #detection #robust
- Improved robustness of signature-based near-replica detection via lexicon randomization (AK, AC, JA), pp. 605–610.
- KDD-2004-KummamuruKA #difference #learning #metric
- Learning spatially variant dissimilarity (SVaD) measures (KK, RK, RA), pp. 611–616.
- KDD-2004-LiHY #clustering
- Clustering moving objects (YL, JH, JY), pp. 617–622.
- KDD-2004-LiuWY #clustering #framework
- A framework for ontology-driven subspace clustering (JL, WW, JY), pp. 623–628.
- KDD-2004-LiuYM #algorithm #classification #parametricity #performance
- The IOC algorithm: efficient many-class non-parametric classification for high-dimensional data (TL, KY, AWM), pp. 629–634.
- KDD-2004-MelkmanS #clustering
- Sleeved coclustering (AAM, ES), pp. 635–640.
- KDD-2004-NatsevNS #mining #multi #representation #semantics
- Semantic representation: search and mining of multimedia content (AN, MRN, JRS), pp. 641–646.
- KDD-2004-NijssenK #difference #mining
- A quickstart in frequent structure mining can make a difference (SN, JNK), pp. 647–652.
- KDD-2004-PanYFD #automation #correlation #multi
- Automatic multimedia cross-modal correlation discovery (JYP, HJY, CF, PD), pp. 653–658.
- KDD-2004-Poole #approach
- Estimating the size of the telephone universe: a Bayesian Mark-recapture approach (DP), pp. 659–664.
- KDD-2004-PopesculU #clustering #concept #learning #relational #statistics
- Cluster-based concept invention for statistical relational learning (AP, LHU), pp. 665–670.
- KDD-2004-RusmevichientongZS #identification
- Identifying early buyers from purchase data (PR, SZ, DS), pp. 671–677.
- KDD-2004-SanilKLR #distributed #modelling #privacy
- Privacy preserving regression modelling via distributed computation (APS, AFK, XL, JPR), pp. 677–682.
- KDD-2004-SeppanenM
- Dense itemsets (JKS, HM), pp. 683–688.
- KDD-2004-SteinbachTXK
- Generalizing the notion of support (MS, PNT, HX, VK), pp. 689–694.
- KDD-2004-TanJ #multi
- Ordering patterns by combining opinions from multiple sources (PNT, RJ), pp. 695–700.
- KDD-2004-TinoKS #approach #generative #probability #sequence #set #visualisation
- A generative probabilistic approach to visualizing sets of symbolic sequences (PT, AK, YS), pp. 701–706.
- KDD-2004-VlachosGD #distance #invariant #metric
- Rotation invariant distance measures for trajectories (MV, DG, GD), pp. 707–712.
- KDD-2004-WrightY #distributed #network #privacy #semistructured data
- Privacy-preserving Bayesian network structure computation on distributed heterogeneous data (RNW, ZY), pp. 713–718.
- KDD-2004-WuGH #clustering #mining #network #using
- Mining scale-free networks using geodesic clustering (AYW, MG, JH), pp. 719–724.
- KDD-2004-YanZYYLCXFMC #incremental #named
- IMMC: incremental maximum margin criterion (JY, BZ, SY, QY, HL, ZC, WX, WF, WYM, QC), pp. 725–730.
- KDD-2004-YangLHG #mining #named #performance #query #xml
- 2PXMiner: an efficient two pass mining of frequent XML query patterns (LHY, MLL, WH, XG), pp. 731–736.
- KDD-2004-YuL #array #feature model
- Redundancy based feature selection for microarray data (LY, HL), pp. 737–742.
- KDD-2004-ZhaiVY #comparative #mining
- A cross-collection mixture model for comparative text mining (CZ, AV, BY), pp. 743–748.
- KDD-2004-ZhangZK #approach #category theory #data mining #image #mining #modelling
- A data mining approach to modeling relationships among categories in image collection (RZ, Z(Z, SK), pp. 749–754.
- KDD-2004-ZhengPZ #approach
- A DEA approach for model combination (Z(Z, BP, HZ), pp. 755–760.
- KDD-2004-ZhuL #data mining #mining #privacy
- Optimal randomization for privacy preserving data mining (MYZ, LL), pp. 761–766.
- KDD-2004-AbeVAS #learning
- Cross channel optimized marketing by reinforcement learning (NA, NKV, CA, RS), pp. 767–772.
- KDD-2004-AksoyKTM #classification #image #interactive #mining
- Interactive training of advanced classifiers for mining remote sensing image archives (SA, KK, CT, GBM), pp. 773–782.
- KDD-2004-BorgsCMS #community
- Exploring the community structure of newsgroups (CB, JTC, MM, AS), pp. 783–787.
- KDD-2004-Cantu-PazNK #feature model
- Feature selection in scientific applications (ECP, SDN, CK), pp. 788–793.
- KDD-2004-DavidsonGST #algorithm #approach #data mining #matrix #mining #quality
- A general approach to incorporate data quality matrices into data mining algorithms (ID, AG, AS, GKT), pp. 794–798.
- KDD-2004-AbajoDLC #case study #data mining #delivery #industrial #mining #modelling #quality
- ANN quality diagnostic models for packaging manufacturing: an industrial data mining case study (NdA, ABD, VL, SRC), pp. 799–804.
- KDD-2004-KalagnanamSVPW #automation
- A system for automated mapping of bill-of-materials part numbers (JK, MS, SV, MP, YWW), pp. 805–810.
- KDD-2004-MorinagaY #finite #roadmap #topic #using
- Tracking dynamics of topic trends using a finite mixture model (SM, KY), pp. 811–816.
- KDD-2004-NakataT #mining #predict
- Mining traffic data from probe-car system for travel time prediction (TN, JiT), pp. 817–822.
- KDD-2004-Ordonez #algorithm #clustering #programming #sql
- Programming the K-means clustering algorithm in SQL (CO), pp. 823–828.
- KDD-2004-PavlovBDKP #classification #clustering #documentation #multi #naive bayes #preprocessor
- Document preprocessing for naive Bayes classification and clustering with mixture of multinomials (DP, RB, BD, SK, JP), pp. 829–834.
- KDD-2004-TruongLB #dataset #learning #random #using
- Learning a complex metabolomic dataset using random forests and support vector machines (YT, XL, CB), pp. 835–840.
- KDD-2004-VogelW #modelling
- 1-dimensional splines as building blocks for improving accuracy of risk outcomes models (DSV, MCW), pp. 841–846.
- KDD-2004-YehTJS
- Analytical view of business data (AY, JT, YJ, SS), pp. 847–852.
32 ×#mining
15 ×#clustering
9 ×#data mining
9 ×#detection
9 ×#named
8 ×#approach
8 ×#learning
8 ×#performance
7 ×#modelling
6 ×#classification
15 ×#clustering
9 ×#data mining
9 ×#detection
9 ×#named
8 ×#approach
8 ×#learning
8 ×#performance
7 ×#modelling
6 ×#classification