Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Won Kim, Ron Kohavi, Johannes Gehrke, William DuMouchel
Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining
KDD, 2004.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{KDD-2004,
	address       = "Seattle, Washington, USA",
	editor        = "Won Kim and Ron Kohavi and Johannes Gehrke and William DuMouchel",
	isbn          = "1-58113-888-1",
	publisher     = "{ACM}",
	title         = "{Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining}",
	year          = 2004,
}

Contents (112 items)

KDD-2004-Haseltine #design
User-centered design for KDD (EH), p. 1.
KDD-2004-Heckerman #data mining #mining #modelling #visual notation
Graphical models for data mining (DH), p. 2.
KDD-2004-AbeZL #learning #multi
An iterative method for multi-class cost-sensitive learning (NA, BZ, JL), pp. 3–11.
KDD-2004-AfratiGM #approximate #set
Approximating a collection of frequent sets (FNA, AG, HM), pp. 12–19.
KDD-2004-AgichteinG #automation #mining #segmentation
Mining reference tables for automatic text segmentation (EA, VG), pp. 20–29.
KDD-2004-AiroldiF #network
Recovering latent time-series from their observed sums: network tomography with particle filters (EA, CF), pp. 30–39.
KDD-2004-AndersonMCN #performance
Fast nonlinear regression via eigenimages applied to galactic morphology (BA, AWM, AJC, RN), pp. 40–48.
KDD-2004-BagnallJ #clustering #modelling
Clustering time series from ARMA models with clipped data (AJB, GJJ), pp. 49–58.
KDD-2004-BasuBM #clustering #framework #probability
A probabilistic framework for semi-supervised clustering (SB, MB, RJM), pp. 59–68.
KDD-2004-CaruanaN #analysis #data mining #empirical #learning #metric #mining #performance
Data mining in metric space: an empirical analysis of supervised learning performance criteria (RC, ANM), pp. 69–78.
KDD-2004-ChakrabartiPMF #automation
Fully automatic cross-associations (DC, SP, DSM, CF), pp. 79–88.
KDD-2004-CohenS #integration #markov #process
Exploiting dictionaries in named entity extraction: combining semi-Markov extraction processes and data integration methods (WWC, SS), pp. 89–98.
KDD-2004-DalviDMSV #classification
Adversarial classification (NND, PMD, M, SKS, DV), pp. 99–108.
KDD-2004-EvgeniouP #learning #multi
Regularized multi--task learning (TE, MP), pp. 109–117.
KDD-2004-FaloutsosMT #performance
Fast discovery of connection subgraphs (CF, KSM, AT), pp. 118–127.
KDD-2004-Fan #concept #data type
Systematic data selection to mine concept-drifting data streams (WF), pp. 128–137.
KDD-2004-GadeWK #constraints #mining #performance
Efficient closed pattern mining in the presence of tough block constraints (KG, JW, GK), pp. 138–147.
KDD-2004-HeCH #approach #correlation #interface #mining #query #web
Discovering complex matchings across web query interfaces: a correlation mining approach (BH, KCCC, JH), pp. 148–157.
KDD-2004-HorvathGW #graph #kernel #mining #predict
Cyclic pattern kernels for predictive graph mining (TH, TG, SW), pp. 158–167.
KDD-2004-HuL #mining
Mining and summarizing customer reviews (MH, BL), pp. 168–177.
KDD-2004-JaroszewiczS #network #using
Interestingness of frequent itemsets using Bayesian networks as background knowledge (SJ, DAS), pp. 178–186.
KDD-2004-JehW #graph #mining
Mining the space of graph properties (GJ, JW), pp. 187–196.
KDD-2004-JinZM #analysis #mining #probability #semantics #web
Web usage mining based on probabilistic latent semantic analysis (XJ, YZ, BM), pp. 197–205.
KDD-2004-KeoghLR #data mining #mining #towards
Towards parameter-free data mining (EJK, SL, C(R), pp. 206–215.
KDD-2004-KumarMS #approach #graph
A graph-theoretic approach to extract storylines from search results (RK, UM, DS), pp. 216–225.
KDD-2004-LiCTW #incremental #maintenance
Incremental maintenance of quotient cube for median (CL, GC, AKHT, SW), pp. 226–235.
KDD-2004-MamoulisCKHTC #mining #query
Mining, indexing, and querying historical spatiotemporal data (NM, HC, GK, MH, YT, DWC), pp. 236–245.
KDD-2004-Muslea #machine learning #online #query
Machine learning for online query relaxation (IM), pp. 246–255.
KDD-2004-NeillM #agile #clustering #detection
Rapid detection of significant spatial clusters (DBN, AWM), pp. 256–265.
KDD-2004-RamakrishnanKMPH #algorithm #mining
Turning CARTwheels: an alternating algorithm for mining redescriptions (NR, DK, BM, MP, RFH), pp. 266–275.
KDD-2004-ShavlikS #detection #effectiveness #evaluation
Selection, combination, and evaluation of effective software sensors for detecting abnormal computer usage (JWS, MS), pp. 276–285.
KDD-2004-SmithE #framework #network
A Bayesian network framework for reject inference (ATS, CE), pp. 286–295.
KDD-2004-SteinbachTK
Support envelopes: a technique for exploring the structure of association patterns (MS, PNT, VK), pp. 296–305.
KDD-2004-SteyversSRG #modelling #probability #topic
Probabilistic author-topic models for information discovery (MS, PS, MRZ, TLG), pp. 306–315.
KDD-2004-WangWPZS #database #graph #mining #scalability
Scalable mining of large disk-based graph databases (CW, WW, JP, YZ, BS), pp. 316–325.
KDD-2004-WuS #information management
Incorporating prior knowledge with weighted margin support vector machines (XW, RKS), pp. 326–333.
KDD-2004-XiongSTK #bound #correlation #identification
Exploiting a support-based upper bound of Pearson’s correlation coefficient for efficiently identifying strongly correlated pairs (HX, SS, PNT, VK), pp. 334–343.
KDD-2004-Yang #complexity #mining
The complexity of mining maximal frequent itemsets and maximal frequent patterns (GY), pp. 344–353.
KDD-2004-YeJL #image #named #performance #reduction #retrieval
GPCA: an efficient dimension reduction scheme for image compression and retrieval (JY, RJ, QL), pp. 354–363.
KDD-2004-YePLJXK #algorithm #composition #incremental #named #reduction
IDR/QR: an incremental dimension reduction algorithm via QR decomposition (JY, QL, HX, HP, RJ, VK), pp. 364–373.
KDD-2004-ZhangPT #on the #statistics
On the discovery of significant statistical quantitative rules (HZ, BP, AT), pp. 374–383.
KDD-2004-ZhangMCS #mining #performance
Fast mining of spatial collocations (XZ, NM, DWC, YS), pp. 384–393.
KDD-2004-AliS #architecture #collaboration #distributed #named #recommendation #using
TiVo: making show recommendations using a distributed collaborative filtering architecture (KA, WvS), pp. 394–401.
KDD-2004-CumbyFGK #predict
Predicting customer shopping lists from point-of-sale purchase data (CMC, AEF, RG, MK), pp. 402–409.
KDD-2004-DengPML #rank
A rank sum test method for informative gene discovery (LD, JP, JM, DLL), pp. 410–419.
KDD-2004-Donoho #detection
Early detection of insider trading in option markets (SD), pp. 420–429.
KDD-2004-JiangPRTZ #array #clustering #mining
Mining coherent gene clusters from gene-sample-time microarray data (DJ, JP, MR, CT, AZ), pp. 430–439.
KDD-2004-IdeK #detection
Eigenspace-based anomaly detection in computer systems (TI, HK), pp. 440–449.
KDD-2004-LazarevicKK #detection #effectiveness #locality #scalability
Effective localized regression for damage detection in large complex mechanical structures (AL, RK, CK), pp. 450–459.
KDD-2004-LinKLLN #mining #monitoring #visual notation
Visually mining and monitoring massive time series (JL, EJK, SL, JPL, DMN), pp. 460–469.
KDD-2004-KolterM #bytecode #detection #learning
Learning to detect malicious executables in the wild (JZK, MAM), pp. 470–478.
KDD-2004-YanVS #predict
Predicting prostate cancer recurrence via maximizing the concordance index (LY, DV, OS), pp. 479–485.
KDD-2004-YoshidaAWMHNFY #detection
Density-based spam detector (KY, FA, TW, HM, TH, AN, HF, KY), pp. 486–493.
KDD-2004-ZhaoLTS #coordination #design #named #parallel #testing #using
V-Miner: using enhanced parallel coordinates to mine product design and test data (KZ, BL, TMT, AS), pp. 494–502.
KDD-2004-AggarwalHWY #classification #data type #on the
On demand classification of data streams (CCA, JH, JW, PSY), pp. 503–508.
KDD-2004-BanerjeeDGMM #approach #approximate #clustering #matrix
A generalized maximum entropy approach to bregman co-clustering and matrix approximation (AB, ISD, JG, SM, DSM), pp. 509–514.
KDD-2004-BanerjeeL #clustering #evaluation
An objective evaluation criterion for clustering (AB, JL), pp. 515–520.
KDD-2004-BiZB #kernel
Column-generation boosting methods for mixture of kernels (JB, TZ, KPB), pp. 521–526.
KDD-2004-ChengYH #database #incremental #mining #named #scalability
IncSpan: incremental mining of sequential patterns in large database (HC, XY, JH), pp. 527–532.
KDD-2004-ChilsonNWZ #correlation #matrix #parallel #robust
Parallel computation of high dimensional robust correlation and covariance matrices (JC, RTN, AW, RHZ), pp. 533–538.
KDD-2004-DasMS
Belief state approaches to signaling alarms in surveillance systems (KD, AWM, JGS), pp. 539–544.
KDD-2004-DavidsonP #image
Locating secret messages in images (ID, GP), pp. 545–550.
KDD-2004-DhillonGK #clustering #kernel #normalisation
Kernel k-means: spectral clustering and normalized cuts (ISD, YG, BK), pp. 551–556.
KDD-2004-EsterGJH #data mining #mining #problem #segmentation
A microeconomic data mining problem: customer-oriented catalog segmentation (ME, RG, WJ, ZH), pp. 557–562.
KDD-2004-GilburdSW #distributed #named #privacy #scalability
k-TTP: a new privacy model for large-scale distributed environments (BG, AS, RW), pp. 563–568.
KDD-2004-Hooker #estimation
Diagnosing extrapolation: tree-based density estimation (GH), pp. 569–574.
KDD-2004-Hooker04a #black box
Discovering additive structure in black box functions (GH), pp. 575–580.
KDD-2004-HuanWPY #database #graph #mining #named
SPIN: mining maximal frequent subgraphs from graph databases (JH, WW, JP, JY), pp. 581–586.
KDD-2004-Iyengar #clustering #detection #on the
On detecting space-time clusters (VSI), pp. 587–592.
KDD-2004-JensenNG #classification #relational #why
Why collective inference improves relational classification (DJ, JN, BG), pp. 593–598.
KDD-2004-KantarciogluJC #data mining #mining #privacy #question
When do data mining results violate privacy? (MK, JJ, CC), pp. 599–604.
KDD-2004-KolczCA #detection #robust
Improved robustness of signature-based near-replica detection via lexicon randomization (AK, AC, JA), pp. 605–610.
KDD-2004-KummamuruKA #difference #learning #metric
Learning spatially variant dissimilarity (SVaD) measures (KK, RK, RA), pp. 611–616.
KDD-2004-LiHY #clustering
Clustering moving objects (YL, JH, JY), pp. 617–622.
KDD-2004-LiuWY #clustering #framework
A framework for ontology-driven subspace clustering (JL, WW, JY), pp. 623–628.
KDD-2004-LiuYM #algorithm #classification #parametricity #performance
The IOC algorithm: efficient many-class non-parametric classification for high-dimensional data (TL, KY, AWM), pp. 629–634.
KDD-2004-MelkmanS #clustering
Sleeved coclustering (AAM, ES), pp. 635–640.
KDD-2004-NatsevNS #mining #multi #representation #semantics
Semantic representation: search and mining of multimedia content (AN, MRN, JRS), pp. 641–646.
KDD-2004-NijssenK #difference #mining
A quickstart in frequent structure mining can make a difference (SN, JNK), pp. 647–652.
KDD-2004-PanYFD #automation #correlation #multi
Automatic multimedia cross-modal correlation discovery (JYP, HJY, CF, PD), pp. 653–658.
KDD-2004-Poole #approach
Estimating the size of the telephone universe: a Bayesian Mark-recapture approach (DP), pp. 659–664.
KDD-2004-PopesculU #clustering #concept #learning #relational #statistics
Cluster-based concept invention for statistical relational learning (AP, LHU), pp. 665–670.
KDD-2004-RusmevichientongZS #identification
Identifying early buyers from purchase data (PR, SZ, DS), pp. 671–677.
KDD-2004-SanilKLR #distributed #modelling #privacy
Privacy preserving regression modelling via distributed computation (APS, AFK, XL, JPR), pp. 677–682.
KDD-2004-SeppanenM
Dense itemsets (JKS, HM), pp. 683–688.
KDD-2004-SteinbachTXK
Generalizing the notion of support (MS, PNT, HX, VK), pp. 689–694.
KDD-2004-TanJ #multi
Ordering patterns by combining opinions from multiple sources (PNT, RJ), pp. 695–700.
KDD-2004-TinoKS #approach #generative #probability #sequence #set #visualisation
A generative probabilistic approach to visualizing sets of symbolic sequences (PT, AK, YS), pp. 701–706.
KDD-2004-VlachosGD #distance #invariant #metric
Rotation invariant distance measures for trajectories (MV, DG, GD), pp. 707–712.
KDD-2004-WrightY #distributed #network #privacy #semistructured data
Privacy-preserving Bayesian network structure computation on distributed heterogeneous data (RNW, ZY), pp. 713–718.
KDD-2004-WuGH #clustering #mining #network #using
Mining scale-free networks using geodesic clustering (AYW, MG, JH), pp. 719–724.
KDD-2004-YanZYYLCXFMC #incremental #named
IMMC: incremental maximum margin criterion (JY, BZ, SY, QY, HL, ZC, WX, WF, WYM, QC), pp. 725–730.
KDD-2004-YangLHG #mining #named #performance #query #xml
2PXMiner: an efficient two pass mining of frequent XML query patterns (LHY, MLL, WH, XG), pp. 731–736.
KDD-2004-YuL #array #feature model
Redundancy based feature selection for microarray data (LY, HL), pp. 737–742.
KDD-2004-ZhaiVY #comparative #mining
A cross-collection mixture model for comparative text mining (CZ, AV, BY), pp. 743–748.
KDD-2004-ZhangZK #approach #category theory #data mining #image #mining #modelling
A data mining approach to modeling relationships among categories in image collection (RZ, Z(Z, SK), pp. 749–754.
KDD-2004-ZhengPZ #approach
A DEA approach for model combination (Z(Z, BP, HZ), pp. 755–760.
KDD-2004-ZhuL #data mining #mining #privacy
Optimal randomization for privacy preserving data mining (MYZ, LL), pp. 761–766.
KDD-2004-AbeVAS #learning
Cross channel optimized marketing by reinforcement learning (NA, NKV, CA, RS), pp. 767–772.
KDD-2004-AksoyKTM #classification #image #interactive #mining
Interactive training of advanced classifiers for mining remote sensing image archives (SA, KK, CT, GBM), pp. 773–782.
KDD-2004-BorgsCMS #community
Exploring the community structure of newsgroups (CB, JTC, MM, AS), pp. 783–787.
KDD-2004-Cantu-PazNK #feature model
Feature selection in scientific applications (ECP, SDN, CK), pp. 788–793.
KDD-2004-DavidsonGST #algorithm #approach #data mining #matrix #mining #quality
A general approach to incorporate data quality matrices into data mining algorithms (ID, AG, AS, GKT), pp. 794–798.
KDD-2004-AbajoDLC #case study #data mining #delivery #industrial #mining #modelling #quality
ANN quality diagnostic models for packaging manufacturing: an industrial data mining case study (NdA, ABD, VL, SRC), pp. 799–804.
KDD-2004-KalagnanamSVPW #automation
A system for automated mapping of bill-of-materials part numbers (JK, MS, SV, MP, YWW), pp. 805–810.
KDD-2004-MorinagaY #finite #roadmap #topic #using
Tracking dynamics of topic trends using a finite mixture model (SM, KY), pp. 811–816.
KDD-2004-NakataT #mining #predict
Mining traffic data from probe-car system for travel time prediction (TN, JiT), pp. 817–822.
KDD-2004-Ordonez #algorithm #clustering #programming #sql
Programming the K-means clustering algorithm in SQL (CO), pp. 823–828.
KDD-2004-PavlovBDKP #classification #clustering #documentation #multi #naive bayes #preprocessor
Document preprocessing for naive Bayes classification and clustering with mixture of multinomials (DP, RB, BD, SK, JP), pp. 829–834.
KDD-2004-TruongLB #dataset #learning #random #using
Learning a complex metabolomic dataset using random forests and support vector machines (YT, XL, CB), pp. 835–840.
KDD-2004-VogelW #modelling
1-dimensional splines as building blocks for improving accuracy of risk outcomes models (DSV, MCW), pp. 841–846.
KDD-2004-YehTJS
Analytical view of business data (AY, JT, YJ, SS), pp. 847–852.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.