Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Raghu Ramakrishnan, Salvatore J. Stolfo, Roberto J. Bayardo, Ismail Parsa
Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining
KDD, 2000.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{KDD-2000,
	acmid         = "347090",
	address       = "Boston, Massachusetts, USA",
	editor        = "Raghu Ramakrishnan and Salvatore J. Stolfo and Roberto J. Bayardo and Ismail Parsa",
	isbn          = "1-58113-233-6",
	publisher     = "{ACM}",
	title         = "{Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining}",
	year          = 2000,
}

Contents (75 items)

KDD-2000-Papadimitriou #data mining #mining #on the
On certain rigorous approaches to data mining (CHP), p. 2.
KDD-2000-Buchanan #information management #source code #using
Informed knowledge discovery: using prior knowledge in discovery programs (BGB), p. 3.
KDD-2000-Catlett #data mining #mining #privacy
Among those dark electronic mills: privacy and data mining (JC), p. 4.
KDD-2000-Goodnight
Decision support in the booming e-world (JG), p. 5.
KDD-2000-Cutler #metric #named
E-metrics: tomorrow’s business metrics today (MC), p. 6.
KDD-2000-Stodder #data mining #mining
After the gold rush (invited talk, abstract only): data mining in the new economy (DS), p. 7.
KDD-2000-CortesFPR #data type #named
Hancock: a language for extracting signatures from data streams (CC, KF, DP, AR), pp. 9–17.
KDD-2000-FountainDS #mining #testing
Mining IC test data to optimize VLSI testing (TF, TGD, BS), pp. 18–25.
KDD-2000-TalbertF #analysis #empirical
An empirical analysis of techniques for constructing and searching k-dimensional trees (DAT, DHF), pp. 26–33.
KDD-2000-Zaki #generative
Generating non-redundant association rules (MJZ), pp. 34–43.
KDD-2000-Senator #case study #detection #information management #scalability
Ongoing management and application of discovered knowledge in a large regulatory organization: a case study of the use and impact of NASD Regulation’s Advanced Detection System (RADS) (TES), pp. 44–53.
KDD-2000-PadmanabhanT #set
Small is beautiful: discovering the minimal set of unexpected patterns (BP, AT), pp. 54–63.
KDD-2000-FungM #classification
Data selection for support vector machine classifiers (GF, OLM), pp. 64–70.
KDD-2000-DomingosH #data type #mining #performance
Mining high-speed data streams (PMD, GH), pp. 71–80.
KDD-2000-GeS #markov #pattern matching
Deformable Markov model templates for time-series pattern matching (XG, PS), pp. 81–90.
KDD-2000-IyengarAZ #adaptation #learning #using
Active learning using adaptive resampling (VSI, CA, TZ), pp. 91–98.
KDD-2000-Webb #performance
Efficient search for association rules (GIW), pp. 99–107.
KDD-2000-AgarwalAP #generative
Depth first generation of long patterns (RCA, CCA, VVVP), pp. 108–118.
KDD-2000-AggarwalY #similarity
The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space (CCA, PSY), pp. 119–129.
KDD-2000-Tresp
The generalized Bayesian committee machine (VT), pp. 130–139.
KDD-2000-CadezGS #clustering #framework #probability
A general probabilistic framework for clustering individuals and objects (IVC, SG, PS), pp. 140–149.
KDD-2000-FlakeLG #community #identification #performance #web
Efficient identification of Web communities (GWF, SL, CLG), pp. 150–160.
KDD-2000-MannilaM #partial order
Global partial orders from sequential data (HM, CM), pp. 161–168.
KDD-2000-McCallumNU #clustering #performance #set
Efficient clustering of high-dimensional data sets with application to reference matching (AM, KN, LHU), pp. 169–178.
KDD-2000-AnkerstEK #classification #effectiveness #towards
Towards an effective cooperation of the user and the computer for classification (MA, ME, HPK), pp. 179–188.
KDD-2000-FeldmanLRSS #approximate #bias #framework #information management #specification
A framework for specifying explicit bias for revision of approximate information extraction rules (RF, YL, BR, YS, JS), pp. 189–197.
KDD-2000-DrummondH #representation
Explicitly representing expected cost: an alternative to ROC representation (CD, RCH), pp. 198–207.
KDD-2000-LiuHH #multi #summary
Multi-level organization and summarization of the discovered rules (BL, MH, WH), pp. 208–217.
KDD-2000-CrapoWWW #modelling #perspective #process #visualisation
Visualization and the process of modeling: a cognitive-theoretic view (AWC, LBW, WAW, TRW), pp. 218–226.
KDD-2000-HofmannSW #interactive #visualisation
Visualizing association rules with interactive mosaic plots (HH, AS, AFXW), pp. 227–235.
KDD-2000-Yang #3d #dataset #interactive #relational #scalability
Interactive exploration of very large relational datasets through 3D dynamic projections (LY), pp. 236–243.
KDD-2000-HanC #information management #named #process #visualisation
RuleViz: a model for visualizing knowledge discovery process (JH, NC), pp. 244–253.
KDD-2000-CohenKM
Hardening soft information sources (WWC, HAK, DAM), pp. 255–259.
KDD-2000-BarbaraC #clustering #dataset #using
Using the fractal dimension to cluster datasets (DB, PC), pp. 260–264.
KDD-2000-WangZH
Growing decision trees on support-less association rules (KW, SZ, YH), pp. 265–269.
KDD-2000-WangYY #mining #performance
Efficient mining of weighted association rules (WAR) (WW, JY, PSY), pp. 270–274.
KDD-2000-YangWY #mining
Mining asynchronous periodic patterns in time series data (JY, WW, PSY), pp. 275–279.
KDD-2000-CadezHMSW #clustering #modelling #navigation #using #visualisation #web
Visualization of navigation patterns on a Web site using model-based clustering (IVC, DH, CM, PS, SW), pp. 280–284.
KDD-2000-KeoghP #scalability
Scaling up dynamic time warping for datamining applications (EJK, MJP), pp. 285–289.
KDD-2000-LeeLL #knowledge-based #named
IntelliClean: a knowledge-based intelligent data cleaner (MLL, TWL, WLL), pp. 290–294.
KDD-2000-PavlovCS #scalability #towards #using
Towards scalable support vector machines using squashing (DP, DC, PS), pp. 295–299.
KDD-2000-BrijsGSVW #data mining #framework #mining
A data mining framework for optimal product selection in retail supermarket data: the generalized PROFSET model (TB, BG, GS, KV, GW), pp. 300–304.
KDD-2000-WangMSW #biology #case study #classification #data mining #mining #network #sequence
Application of neural networks to biological data mining: a case study in protein sequence classification (JTLW, QM, DS, CHW), pp. 305–309.
KDD-2000-ZhangDR #constraints #dataset #scalability
Exploring constraints to efficiently mine emerging patterns from large high-dimensional datasets (XZ, GD, KR), pp. 310–314.
KDD-2000-Bay #mining #multi #set
Multivariate discretization of continuous variables for set mining (SDB), pp. 315–319.
KDD-2000-YamanishiTWM #algorithm #detection #finite #learning #online #using
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms (KY, JiT, GJW, PM), pp. 320–324.
KDD-2000-KontkanenLMT #visualisation
Unsupervised Bayesian visualization of high-dimensional data (PK, JL, PM, HT), pp. 325–329.
KDD-2000-SchefferW #algorithm
A sequential sampling algorithm for a general class of utility criteria (TS, SW), pp. 330–334.
KDD-2000-GarofalakisHRS #algorithm #constraints #performance
Efficient algorithms for constructing decision trees with constraints (MNG, DH, RR, KS), pp. 335–339.
KDD-2000-YiS #classification #documentation
A classifier for semi-structured documents (JY, NS), pp. 340–344.
KDD-2000-DeCosteW
Alpha seeding for support vector machines (DD, KW), pp. 345–349.
KDD-2000-PeiH #constraints #mining #question
Can we push more constraints into frequent pattern mining? (JP, JH), pp. 350–354.
KDD-2000-HanPMCDH #mining #named
FreeSpan: frequent pattern-projected sequential pattern mining (JH, JP, BMA, QC, UD, MH), pp. 355–359.
KDD-2000-DyB #feature model #interactive #visualisation
Visualization and interactive feature selection for unsupervised data (JGD, CEB), pp. 360–364.
KDD-2000-KimSM #feature model #learning #search-based
Feature selection in unsupervised learning via evolutionary search (YK, WNS, FM), pp. 365–369.
KDD-2000-InselbergA #classification #visualisation
Classification and visualization for high-dimensional data (AI, TA), pp. 370–374.
KDD-2000-GardnerB #data mining #mining #problem
Data mining solves tough semiconductor manufacturing problems (MG, JB), pp. 376–383.
KDD-2000-KingKCD #data mining #functional #mining #predict #sequence #using
Genome scale prediction of protein functional class from sequence using data mining (RDK, AK, AC, LD), pp. 384–389.
KDD-2000-PenaFL #behaviour #data mining #detection #mining
Data mining to detect abnormal behavior in aerospace data (JMP, FF, SL), pp. 390–397.
KDD-2000-GerstenWA #case study #experience #modelling #predict #roadmap #tool support
Predictive modeling in automotive direct marketing: tools, experiences and open issues (WG, RW, DA), pp. 398–406.
KDD-2000-BeefermanB #clustering #query
Agglomerative clustering of a search engine query log (DB, ALB), pp. 407–416.
KDD-2000-TanBHG #data mining #mining
Textual data mining of service center call records (PNT, HB, SAH, RPG), pp. 417–423.
KDD-2000-BecherBF #automation #data analysis #data mining #mining #performance
Automating exploratory data analysis for efficient data mining (JDB, PB, EF), pp. 424–429.
KDD-2000-HsuLLL #database #mining
Exploration mining in diabetic patients databases: findings and conclusions (WH, MLL, BL, TWL), pp. 430–436.
KDD-2000-KittsFV #independence #named #performance #recommendation
Cross-sell: a fast promotion-tunable customer-item recommendation method based on conditionally independent probabilities (BK, DF, MV), pp. 437–446.
KDD-2000-ChouGGK #identification
Identifying prospective customers (PBC, EG, DG, PK), pp. 447–456.
KDD-2000-MaLWYL #data mining #mining #student #using
Targeting the right students using data mining (YM, BL, CKW, PSY, SML), pp. 457–464.
KDD-2000-Bhattacharyya #algorithm #data mining #mining #modelling #multi #performance
Evolutionary algorithms in data mining: multi-objective performance modeling for direct marketing (SB), pp. 465–473.
KDD-2000-Farahat #hybrid #process
Hybrid Poisson process (AF), pp. 474–479.
KDD-2000-DhondGV #data mining #mining #optimisation
Data mining techniques for optimizing inventories for electronic commerce (AD, AG, SV), pp. 480–486.
KDD-2000-GavrilovAIM #mining #question
Mining the stock market (extended abstract): which measure is best? (MG, DA, PI, RM), pp. 487–496.
KDD-2000-Caraca-ValenteL
Discovering similar patterns in time series (JPCV, ILC), pp. 497–505.
KDD-2000-RaghavanBS #detection #predict #process #using
Defection detection: using activity profiles to predict ISP customer vulnerability (NR, RMB, MS), pp. 506–515.
KDD-2000-ChenLP #estimation #incremental
Incremental quantile estimation for massive tracking (FC, DL, JCP), pp. 516–522.
KDD-2000-PairceirMS #database #distributed #exception #multi
Discovery of multi-level rules and exceptions from a distributed database (RP, SIM, BWS), pp. 523–532.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.