Raghu Ramakrishnan, Salvatore J. Stolfo, Roberto J. Bayardo, Ismail Parsa
Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining
KDD, 2000.
@proceedings{KDD-2000, acmid = "347090", address = "Boston, Massachusetts, USA", editor = "Raghu Ramakrishnan and Salvatore J. Stolfo and Roberto J. Bayardo and Ismail Parsa", isbn = "1-58113-233-6", publisher = "{ACM}", title = "{Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining}", year = 2000, }
Contents (75 items)
- KDD-2000-Papadimitriou #data mining #mining #on the
- On certain rigorous approaches to data mining (CHP), p. 2.
- KDD-2000-Buchanan #information management #source code #using
- Informed knowledge discovery: using prior knowledge in discovery programs (BGB), p. 3.
- KDD-2000-Catlett #data mining #mining #privacy
- Among those dark electronic mills: privacy and data mining (JC), p. 4.
- KDD-2000-Goodnight
- Decision support in the booming e-world (JG), p. 5.
- KDD-2000-Cutler #metric #named
- E-metrics: tomorrow’s business metrics today (MC), p. 6.
- KDD-2000-Stodder #data mining #mining
- After the gold rush (invited talk, abstract only): data mining in the new economy (DS), p. 7.
- KDD-2000-CortesFPR #data type #named
- Hancock: a language for extracting signatures from data streams (CC, KF, DP, AR), pp. 9–17.
- KDD-2000-FountainDS #mining #testing
- Mining IC test data to optimize VLSI testing (TF, TGD, BS), pp. 18–25.
- KDD-2000-TalbertF #analysis #empirical
- An empirical analysis of techniques for constructing and searching k-dimensional trees (DAT, DHF), pp. 26–33.
- KDD-2000-Zaki #generative
- Generating non-redundant association rules (MJZ), pp. 34–43.
- KDD-2000-Senator #case study #detection #information management #scalability
- Ongoing management and application of discovered knowledge in a large regulatory organization: a case study of the use and impact of NASD Regulation’s Advanced Detection System (RADS) (TES), pp. 44–53.
- KDD-2000-PadmanabhanT #set
- Small is beautiful: discovering the minimal set of unexpected patterns (BP, AT), pp. 54–63.
- KDD-2000-FungM #classification
- Data selection for support vector machine classifiers (GF, OLM), pp. 64–70.
- KDD-2000-DomingosH #data type #mining #performance
- Mining high-speed data streams (PMD, GH), pp. 71–80.
- KDD-2000-GeS #markov #pattern matching
- Deformable Markov model templates for time-series pattern matching (XG, PS), pp. 81–90.
- KDD-2000-IyengarAZ #adaptation #learning #using
- Active learning using adaptive resampling (VSI, CA, TZ), pp. 91–98.
- KDD-2000-Webb #performance
- Efficient search for association rules (GIW), pp. 99–107.
- KDD-2000-AgarwalAP #generative
- Depth first generation of long patterns (RCA, CCA, VVVP), pp. 108–118.
- KDD-2000-AggarwalY #similarity
- The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space (CCA, PSY), pp. 119–129.
- KDD-2000-Tresp
- The generalized Bayesian committee machine (VT), pp. 130–139.
- KDD-2000-CadezGS #clustering #framework #probability
- A general probabilistic framework for clustering individuals and objects (IVC, SG, PS), pp. 140–149.
- KDD-2000-FlakeLG #community #identification #performance #web
- Efficient identification of Web communities (GWF, SL, CLG), pp. 150–160.
- KDD-2000-MannilaM #partial order
- Global partial orders from sequential data (HM, CM), pp. 161–168.
- KDD-2000-McCallumNU #clustering #performance #set
- Efficient clustering of high-dimensional data sets with application to reference matching (AM, KN, LHU), pp. 169–178.
- KDD-2000-AnkerstEK #classification #effectiveness #towards
- Towards an effective cooperation of the user and the computer for classification (MA, ME, HPK), pp. 179–188.
- KDD-2000-FeldmanLRSS #approximate #bias #framework #information management #specification
- A framework for specifying explicit bias for revision of approximate information extraction rules (RF, YL, BR, YS, JS), pp. 189–197.
- KDD-2000-DrummondH #representation
- Explicitly representing expected cost: an alternative to ROC representation (CD, RCH), pp. 198–207.
- KDD-2000-LiuHH #multi #summary
- Multi-level organization and summarization of the discovered rules (BL, MH, WH), pp. 208–217.
- KDD-2000-CrapoWWW #modelling #perspective #process #visualisation
- Visualization and the process of modeling: a cognitive-theoretic view (AWC, LBW, WAW, TRW), pp. 218–226.
- KDD-2000-HofmannSW #interactive #visualisation
- Visualizing association rules with interactive mosaic plots (HH, AS, AFXW), pp. 227–235.
- KDD-2000-Yang #3d #dataset #interactive #relational #scalability
- Interactive exploration of very large relational datasets through 3D dynamic projections (LY), pp. 236–243.
- KDD-2000-HanC #information management #named #process #visualisation
- RuleViz: a model for visualizing knowledge discovery process (JH, NC), pp. 244–253.
- KDD-2000-CohenKM
- Hardening soft information sources (WWC, HAK, DAM), pp. 255–259.
- KDD-2000-BarbaraC #clustering #dataset #using
- Using the fractal dimension to cluster datasets (DB, PC), pp. 260–264.
- KDD-2000-WangZH
- Growing decision trees on support-less association rules (KW, SZ, YH), pp. 265–269.
- KDD-2000-WangYY #mining #performance
- Efficient mining of weighted association rules (WAR) (WW, JY, PSY), pp. 270–274.
- KDD-2000-YangWY #mining
- Mining asynchronous periodic patterns in time series data (JY, WW, PSY), pp. 275–279.
- KDD-2000-CadezHMSW #clustering #modelling #navigation #using #visualisation #web
- Visualization of navigation patterns on a Web site using model-based clustering (IVC, DH, CM, PS, SW), pp. 280–284.
- KDD-2000-KeoghP #scalability
- Scaling up dynamic time warping for datamining applications (EJK, MJP), pp. 285–289.
- KDD-2000-LeeLL #knowledge-based #named
- IntelliClean: a knowledge-based intelligent data cleaner (MLL, TWL, WLL), pp. 290–294.
- KDD-2000-PavlovCS #scalability #towards #using
- Towards scalable support vector machines using squashing (DP, DC, PS), pp. 295–299.
- KDD-2000-BrijsGSVW #data mining #framework #mining
- A data mining framework for optimal product selection in retail supermarket data: the generalized PROFSET model (TB, BG, GS, KV, GW), pp. 300–304.
- KDD-2000-WangMSW #biology #case study #classification #data mining #mining #network #sequence
- Application of neural networks to biological data mining: a case study in protein sequence classification (JTLW, QM, DS, CHW), pp. 305–309.
- KDD-2000-ZhangDR #constraints #dataset #scalability
- Exploring constraints to efficiently mine emerging patterns from large high-dimensional datasets (XZ, GD, KR), pp. 310–314.
- KDD-2000-Bay #mining #multi #set
- Multivariate discretization of continuous variables for set mining (SDB), pp. 315–319.
- KDD-2000-YamanishiTWM #algorithm #detection #finite #learning #online #using
- On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms (KY, JiT, GJW, PM), pp. 320–324.
- KDD-2000-KontkanenLMT #visualisation
- Unsupervised Bayesian visualization of high-dimensional data (PK, JL, PM, HT), pp. 325–329.
- KDD-2000-SchefferW #algorithm
- A sequential sampling algorithm for a general class of utility criteria (TS, SW), pp. 330–334.
- KDD-2000-GarofalakisHRS #algorithm #constraints #performance
- Efficient algorithms for constructing decision trees with constraints (MNG, DH, RR, KS), pp. 335–339.
- KDD-2000-YiS #classification #documentation
- A classifier for semi-structured documents (JY, NS), pp. 340–344.
- KDD-2000-DeCosteW
- Alpha seeding for support vector machines (DD, KW), pp. 345–349.
- KDD-2000-PeiH #constraints #mining #question
- Can we push more constraints into frequent pattern mining? (JP, JH), pp. 350–354.
- KDD-2000-HanPMCDH #mining #named
- FreeSpan: frequent pattern-projected sequential pattern mining (JH, JP, BMA, QC, UD, MH), pp. 355–359.
- KDD-2000-DyB #feature model #interactive #visualisation
- Visualization and interactive feature selection for unsupervised data (JGD, CEB), pp. 360–364.
- KDD-2000-KimSM #feature model #learning #search-based
- Feature selection in unsupervised learning via evolutionary search (YK, WNS, FM), pp. 365–369.
- KDD-2000-InselbergA #classification #visualisation
- Classification and visualization for high-dimensional data (AI, TA), pp. 370–374.
- KDD-2000-GardnerB #data mining #mining #problem
- Data mining solves tough semiconductor manufacturing problems (MG, JB), pp. 376–383.
- KDD-2000-KingKCD #data mining #functional #mining #predict #sequence #using
- Genome scale prediction of protein functional class from sequence using data mining (RDK, AK, AC, LD), pp. 384–389.
- KDD-2000-PenaFL #behaviour #data mining #detection #mining
- Data mining to detect abnormal behavior in aerospace data (JMP, FF, SL), pp. 390–397.
- KDD-2000-GerstenWA #case study #experience #modelling #predict #roadmap #tool support
- Predictive modeling in automotive direct marketing: tools, experiences and open issues (WG, RW, DA), pp. 398–406.
- KDD-2000-BeefermanB #clustering #query
- Agglomerative clustering of a search engine query log (DB, ALB), pp. 407–416.
- KDD-2000-TanBHG #data mining #mining
- Textual data mining of service center call records (PNT, HB, SAH, RPG), pp. 417–423.
- KDD-2000-BecherBF #automation #data analysis #data mining #mining #performance
- Automating exploratory data analysis for efficient data mining (JDB, PB, EF), pp. 424–429.
- KDD-2000-HsuLLL #database #mining
- Exploration mining in diabetic patients databases: findings and conclusions (WH, MLL, BL, TWL), pp. 430–436.
- KDD-2000-KittsFV #independence #named #performance #recommendation
- Cross-sell: a fast promotion-tunable customer-item recommendation method based on conditionally independent probabilities (BK, DF, MV), pp. 437–446.
- KDD-2000-ChouGGK #identification
- Identifying prospective customers (PBC, EG, DG, PK), pp. 447–456.
- KDD-2000-MaLWYL #data mining #mining #student #using
- Targeting the right students using data mining (YM, BL, CKW, PSY, SML), pp. 457–464.
- KDD-2000-Bhattacharyya #algorithm #data mining #mining #modelling #multi #performance
- Evolutionary algorithms in data mining: multi-objective performance modeling for direct marketing (SB), pp. 465–473.
- KDD-2000-Farahat #hybrid #process
- Hybrid Poisson process (AF), pp. 474–479.
- KDD-2000-DhondGV #data mining #mining #optimisation
- Data mining techniques for optimizing inventories for electronic commerce (AD, AG, SV), pp. 480–486.
- KDD-2000-GavrilovAIM #mining #question
- Mining the stock market (extended abstract): which measure is best? (MG, DA, PI, RM), pp. 487–496.
- KDD-2000-Caraca-ValenteL
- Discovering similar patterns in time series (JPCV, ILC), pp. 497–505.
- KDD-2000-RaghavanBS #detection #predict #process #using
- Defection detection: using activity profiles to predict ISP customer vulnerability (NR, RMB, MS), pp. 506–515.
- KDD-2000-ChenLP #estimation #incremental
- Incremental quantile estimation for massive tracking (FC, DL, JCP), pp. 516–522.
- KDD-2000-PairceirMS #database #distributed #exception #multi
- Discovery of multi-level rules and exceptions from a distributed database (RP, SIM, BWS), pp. 523–532.
22 ×#mining
13 ×#data mining
9 ×#performance
9 ×#using
7 ×#visualisation
6 ×#named
5 ×#classification
5 ×#clustering
5 ×#information management
5 ×#scalability
13 ×#data mining
9 ×#performance
9 ×#using
7 ×#visualisation
6 ×#named
5 ×#classification
5 ×#clustering
5 ×#information management
5 ×#scalability