`Travelled to:`

1 × Austria

1 × Canada

1 × Denmark

1 × Italy

1 × Portugal

1 × Spain

1 × Sweden

1 × United Kingdom

2 × USA

`Collaborated with:`

S.Chakraborty P.V.Suman K.Lodaya G.Chakravorty ∅ S.S.Shah S.N.Krishna K.Loya D.Thomas B.Sharma M.R.K.K.Rao R.K.Shyamasundar J.P.Bowen J.He A.Krebs H.Straubing S.Mohalik A.C.Rajeev M.G.Dixit S.Ramesh S.Jiang

`Talks about:`

logic (4) durat (3) check (3) time (3) reachabl (2) express (2) interv (2) compil (2) model (2) two (2)

## Person: Paritosh K. Pandya

### DBLP: Pandya:Paritosh_K=

### Contributed to:

### Wrote 11 papers:

- DLT-2010-LodayaPS
- Around Dot Depth Two (KL, PKP, SSS), pp. 303–315.
- LATA-2009-SumanP #automaton #integer
- Determinization and Expressiveness of Integer Reset Timed Automata with Silent Transitions (PVS, PKP), pp. 728–739.
- DAC-2008-MohalikRDRSPJ #analysis #embedded #latency #model checking #realtime
- Model checking based analysis of end-to-end latency in embedded, real-time systems with clock drifts (SM, ACR, MGD, SR, PVS, PKP, SJ), pp. 296–299.
- TACAS-2007-PandyaKL #abstraction #logic #on the
- On Sampling Abstraction of Continuous Time Logic with Durations (PKP, SNK, KL), pp. 246–260.
- TACAS-2006-ThomasCP #performance #reachability #using
- Efficient Guided Symbolic Reachability Using Reachability Expressions (DT, SC, PKP), pp. 120–134.
- TACAS-2005-SharmaPC #bound #logic
- Bounded Validity Checking of Interval Duration Logic (BS, PKP, SC), pp. 301–316.
- CAV-2003-ChakravortyP #logic
- Digitizing Interval Duration Logic (GC, PKP), pp. 167–179.
- TACAS-2001-Pandya #model checking
- Model Checking CTL*[DC] (PKP), pp. 559–573.
- FME-1993-RaoPS #compilation #development #tool support #verification
- Verification Tools in the Development of Provably Correct Compilers (MRKKR, PKP, RKS), pp. 442–461.
- PLILP-1990-BowenJP #approach #compilation #prototype #specification
- An Approach to Verifiable Compiling Specification and Prototyping (JPB, JH, PKP), pp. 45–59.
- CSL-2018-KrebsLPS #algebra #logic
- An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation (AK, KL, PKP, HS), p. 17.