Travelled to:
1 × Canada
1 × Greece
9 × USA
Collaborated with:
S.Vempala ∅ H.Narayanan W.F.d.l.Vega M.Karpinski S.Arora L.Lovász D.Applegate M.E.Dyer A.M.Frieze Z.Galil E.Szemerédi D.Cheng G.Wang N.Alon
Talks about:
approxim (3) problem (3) random (3) sampl (3) algorithm (2) program (2) lattic (2) point (2) nondeterminist (1) nondetermin (1)
Person: Ravi Kannan
DBLP: Kannan:Ravi
Contributed to:
Wrote 12 papers:
- STOC-2009-KannanN #linear #programming #random
- Random walks on polytopes and an affine interior point method for linear programming (RK, HN), pp. 561–570.
- PODS-2005-ChengVKW #clustering
- A divide-and-merge methodology for clustering (DC, SV, RK, GW), pp. 196–205.
- STOC-2005-VegaKKV #approximate #composition #constraints #problem
- Tensor decomposition and approximation schemes for constraint satisfaction problems (WFdlV, MK, RK, SV), pp. 747–754.
- STOC-2002-AlonVKK #approximate #problem #random
- Random sampling and approximation of MAX-CSP problems (NA, WFdlV, RK, MK), pp. 232–239.
- STOC-2001-SanjeevK #learning
- Learning mixtures of arbitrary gaussians (SA, RK), pp. 247–257.
- STOC-1999-LovaszK #performance
- Faster Mixing via Average Conductance (LL, RK), pp. 282–287.
- STOC-1997-KannanV
- Sampling Lattice Points (RK, SV), pp. 696–700.
- STOC-1991-ApplegateK #integration
- Sampling and Integration of Near Log-Concave functions (DA, RK), pp. 156–163.
- STOC-1989-DyerFK #algorithm #approximate #polynomial #random
- A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies (MED, AMF, RK), pp. 375–381.
- STOC-1986-GalilKS #graph #nondeterminism #on the #simulation #turing machine
- On Nontrivial Separators for k-Page Graphs and Simulations by Nondeterministic One-Tape Turing Machines (ZG, RK, ES), pp. 39–49.
- STOC-1983-Kannan #algorithm #integer #problem #programming
- Improved Algorithms for Integer Programming and Related Lattice Problems (RK), pp. 193–206.
- STOC-1983-Kannan83a #nondeterminism #power of
- Alternation and the Power of Nondeterminism (RK), pp. 344–346.