Travelled to:
1 × Brazil
1 × Czech Republic
1 × Ireland
1 × Italy
1 × Japan
1 × Poland
1 × Portugal
1 × Serbia
1 × The Netherlands
1 × United Kingdom
2 × Spain
2 × USA
3 × Austria
3 × Germany
Collaborated with:
C.Sternagel J.Giesl P.Schneider-Kamp B.Felgenhauer S.Swiderski A.Y.0002 A.Serebrenik C.Fuhs M.Brockschmidt M.Avanzini G.Allais J.Nagele A.Middeldorp H.Zankl T.Ströder S.Falke K.Kusakari S.J.C.Joosten F.Mesnard A.Rubio J.Waldmann F.Emmes F.Frohn C.Otto M.Plücker S.Swiderski
Talks about:
termin (16) proof (7) analysi (5) program (4) certifi (4) depend (4) autom (4) pair (4) rewrit (3) formal (3)
Person: René Thiemann
DBLP: Thiemann:Ren=eacute=
Contributed to:
Wrote 24 papers:
- CADE-2015-GieslMRTW #contest #termination
- Termination Competition (termCOMP 2015) (JG, FM, AR, RT, JW), pp. 105–108.
- RTA-2015-AvanziniST #certification #complexity #proving #using
- Certification of Complexity Proofs using CeTA (MA, CS, RT), pp. 23–39.
- IJCAR-2014-GieslBEFFOPSSST #automation #proving #source code #termination
- Proving Termination of Programs Automatically with AProVE (JG, MB, FE, FF, CF, CO, MP, PSK, TS, SS, RT), pp. 184–191.
- LATA-2014-FelgenhauerT #analysis #automaton #reachability
- Reachability Analysis with State-Compatible Automata (BF, RT), pp. 347–359.
- RTA-TLCA-2014-SternagelT #algebra #certification #complexity #formal method #proving #termination
- Formalizing Monotone Algebras for Certification of Termination and Complexity Proofs (CS, RT), pp. 441–455.
- RTA-2013-SternagelT #formal method #order
- Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion (CS, RT), pp. 287–302.
- RTA-2012-ThiemannAN #formal method #multi #on the #order #termination
- On the Formalization of Termination Techniques based on Multiset Orderings (RT, GA, JN), pp. 339–354.
- RTA-2011-SternagelT #composition #semantics
- Modular and Certified Semantic Labeling and Unlabeling (CS, RT), pp. 329–344.
- CSL-2010-SternagelT #dependence #proving #termination
- Signature Extensions Preserve Termination — An Alternative Proof via Dependency Pairs (CS, RT), pp. 514–528.
- ICLP-J-2010-Schneider-KampGSST #analysis #automation #logic programming #source code #termination
- Automated termination analysis for logic programs with cut (PSK, JG, TS, AS, RT), pp. 365–381.
- RTA-2010-SternagelT
- Certified Subterm Criterion and Certified Usable Rules (CS, RT), pp. 325–340.
- RTA-2009-ThiemannS
- Loops under Strategies (RT, CS), pp. 17–31.
- RTA-2008-FuhsGMSTZ #termination
- Maximal Termination (CF, JG, AM, PSK, RT, HZ), pp. 110–125.
- RTA-2008-ThiemannGS
- Deciding Innermost Loops (RT, JG, PSK), pp. 366–380.
- CADE-2007-GieslTSS #bound #proving #termination
- Proving Termination by Bounded Increase (JG, RT, SS, PSK), pp. 443–459.
- SAT-2007-FuhsGMSTZ #analysis #polynomial #satisfiability #termination
- SAT Solving for Termination Analysis with Polynomial Interpretations (CF, JG, AM, PSK, RT, HZ), pp. 340–354.
- IJCAR-2006-GieslST #automation #dependence #framework #proving #termination
- Automatic Termination Proofs in the Dependency Pair Framework (JG, PSK, RT), pp. 281–286.
- LOPSTR-2006-Schneider-KampGST #analysis #automation #logic programming #source code #term rewriting #termination
- Automated Termination Analysis for Logic Programs by Term Rewriting (PSK, JG, AS, RT), pp. 177–193.
- RTA-2006-GieslSST #analysis #automation #haskell #programming language #term rewriting #termination
- Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages (JG, SS, PSK, RT), pp. 297–312.
- IJCAR-2004-ThiemannGS #composition #dependence #proving #termination #using
- Improved Modular Termination Proofs Using Dependency Pairs (RT, JG, PSK), pp. 75–90.
- RTA-2004-GieslTSF #automation #proving #termination
- Automated Termination Proofs with AProVE (JG, RT, PSK, SF), pp. 210–220.
- RTA-2003-ThiemannG #term rewriting #termination
- Size-Change Termination for Term Rewriting (RT, JG), pp. 264–278.
- CSL-2016-0002STK #dependence #revisited
- AC Dependency Pairs Revisited (AY0, CS, RT, KK), p. 16.
- CADE-2017-BrockschmidtJT0 #integer #proving #safety #termination
- Certifying Safety and Termination Proofs for Integer Transition Systems (MB, SJCJ, RT, AY0), pp. 454–471.