Travelled to:
1 × Canada
2 × Iceland
5 × USA
Collaborated with:
∅ A.Russell A.W.Harrow L.Hales P.Sen A.Ta-Shma K.Eisenträger A.Kitaev F.Song A.Kolla S.Zhang C.Moore M.Rötteler
Talks about:
quantum (8) group (4) algorithm (3) comput (3) number (2) field (2) unit (2) superpolynomi (1) reconstruct (1) represent (1)
Person: Sean Hallgren
DBLP: Hallgren:Sean
Contributed to:
Wrote 8 papers:
- STOC-2014-EisentragerHK0 #algorithm #quantum
- A quantum algorithm for computing the unit group of an arbitrary degree number field (KE, SH, AK, FS), pp. 293–302.
- ICALP-A-2008-HallgrenH #quantum
- Superpolynomial Speedups Based on Almost Any Quantum Circuit (SH, AWH), pp. 782–795.
- ICALP-C-2008-HallgrenKSZ #protocol #quantum #verification
- Making Classical Honest Verifier Zero Knowledge Protocols Secure against Quantum Attacks (SH, AK, PS, SZ), pp. 592–603.
- STOC-2006-HallgrenMRRS #graph #morphism #quantum
- Limitations of quantum coset states for graph isomorphism (SH, CM, MR, AR, PS), pp. 604–617.
- STOC-2005-Hallgren #algorithm #performance #quantum
- Fast quantum algorithms for computing the unit group and class group of a number field (SH), pp. 468–474.
- STOC-2002-Hallgren #algorithm #equation #polynomial #problem #quantum
- Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem (SH), pp. 653–658.
- STOC-2000-HallgrenRT #quantum #re-engineering #using
- Normal subgroup reconstruction and quantum computation using group representations (SH, AR, ATS), pp. 627–635.
- STOC-1999-HalesH #fourier #quantum
- Quantum Fourier Sampling Simplified (LH, SH), pp. 330–338.